Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Carcinog ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38751032

RESUMO

The serine protease CORIN catalyzes pro-atrial natriuretic peptide (pro-ANP) into an active ANP and maintains homeostasis of the internal environment. However, it is unclear whether CORIN participates in the regulation of tumor progression. We analyzed the expression profile of CORIN in gastric cancer tissues (GCs) and adjacent nontumoral tissues (NTs). We investigated the prognostic value of CORIN in GC patients. We characterized the in vitro and in vivo activity of CORIN in cultured GC cells with gain-of-function and loss-of-function experiments. The underlying mechanism was explored by using bioinformatics, a signaling antibody array, and confirmative western blot analyses, as well as rescue experiments with highly selective small-molecule inhibitors targeting the ERK1/2 MAPK signaling pathway. CORIN was upregulated in GCs than in NTs. Overexpression of CORIN was correlated with unfavorable prognoses in patients with GC. Ectopic expression of CORIN was promoted, whereas silencing of CORIN suppressed proliferation, colony formation, migration and invasion of GC cells, and tumor growth in vivo. Overexpression of CORIN-induced epithelial-mesenchymal transition (EMT) and activation of the ERK1/2 MAPK signaling pathway, while silencing of CORIN yielded opposite results. The in vitro tumor-promoting potency of CORIN could be antagonized by selective inhibitors targeting the ERK1/2 MAPK pathway. In conclusion, CORIN is a potential prognostic marker and therapeutic target for GC patients, which may promote tumor progression by mediating the ERK1/2 MAPK signaling pathway and EMT in GC cells.

2.
Genomics ; 115(6): 110726, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37832857

RESUMO

Simple sequence repeats (SSRs) have been widely used for parentage testing, marker-assisted selection, and evolutionary studies. The insufficient availability of SSR markers in Bactrian camels partially accounts for the lack of systematic breeding. Therefore, we aimed to establish a comprehensive SSR dataset for the Bactrian camel. Our approach involved genome searching to locate every SSR in the genome, SSR-enriched sequencing to acquire polymorphism information, and literature research to collect published data. The resulting dataset contains 213,711 SSRs and details their characteristics, including genome coordinates, motifs, lengths, annotations, PCR primers, and polymorphism information. The dataset reveals a biased distribution of SSRs in the Bactrian camel genome, reflecting the mutation mechanism and complex evolution of SSRs. In practice, we successfully demonstrated the utility of the dataset through parentage testing using 15 randomly selected SSRs. This comprehensive dataset can facilitate systematic breeding and enable QTL mapping and GWAS of the Bactrian camel.


Assuntos
Camelus , Genoma de Planta , Animais , Camelus/genética , Marcadores Genéticos , Polimorfismo Genético , Repetições de Microssatélites
3.
Cell Rep ; 41(5): 111576, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36323253

RESUMO

The nuclear pore complex (NPC) comprises more than 30 nucleoporins (NUPs) and is a hallmark of eukaryotes. NUPs have been suggested to be important in regulating gene transcription and 3D genome organization. However, evidence in support of their direct roles remains limited. Here, by Cut&Run, we find that core NUPs display broad but also cell-type-specific association with active promoters and enhancers in human cells. Auxin-mediated rapid depletion of two NUPs demonstrates that NUP93, but not NUP35, directly and specifically controls gene transcription. NUP93 directly activates genes with high levels of RNA polymerase II loading and transcriptional elongation by facilitating full BRD4 recruitment to their active enhancers. dCas9-based tethering confirms a direct and causal role of NUP93 in gene transcriptional activation. Unexpectedly, in situ Hi-C and H3K27ac or H3K4me1 HiChIP results upon acute NUP93 depletion show negligible changesS2211-1247(22)01437-1 of 3D genome organization ranging from A/B compartments and topologically associating domains (TADs) to enhancer-promoter contacts.


Assuntos
Complexo de Proteínas Formadoras de Poros Nucleares , Proteínas Nucleares , Humanos , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Poro Nuclear , Genoma , Cromatina , Proteínas de Ciclo Celular/genética
4.
Open Med (Wars) ; 17(1): 1390-1404, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36117772

RESUMO

Selenium-binding protein 1 (SELENBP1) is frequently dysregulated in various malignancies including colorectal cancer (CRC); however, its roles in progression of CRCs and the underlying mechanism remain to be elucidated. In this study, we compared the expression of SELENBP1 between CRCs and colorectal normal tissues (NTs), as well as between primary and metastatic CRCs; we determined the association between SELENBP1 expression and CRC patient prognoses; we conducted both in vitro and in vivo experiments to explore the functional roles of SELENBP1 in CRC progression; and we characterized the potential underlying mechanisms associated with SELENBP1 activities. We found that the expression of SELENBP1 was significantly and consistently decreased in CRCs than that in adjacent NTs, while significantly and frequently decreased in metastatic than primary CRCs. High expression of SELENBP1 was an independent predictor of favorable prognoses in CRC patients. Overexpression of SELENBP1 suppressed, while silencing of SELENBP1 promoted cell proliferation, migration and invasion, and in vivo tumorigenesis of CRC. Mechanically, SELENBP1 may suppress CRC progression by inhibiting the epithelial-mesenchymal transition.

5.
Transl Oncol ; 18: 101365, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35158204

RESUMO

BACKGROUND: Selenium binding protein 1 (SELENBP1) is frequently downregulated in malignancies such as colorectal cancer (CRC), however, whether it is involved in tumor angiogenesis is still unknown. METHODS: We analyzed the expression and localization of SELENBP1 in vessels from CRC and neighboring tissues. We investigated the in vitro and in vivo activity of SELENBP1 in angiogenesis and explored the underlying mechanism. RESULTS: SELENBP1 was localized to endothelial cells in addition to glandular cells, while its vascular expression was decreased in tumor vessels compared to that in vessels from neighboring non-tumor tissues. Gain-of-function and loss-of-function experiments demonstrated that SELENBP1 inhibited angiogenesis in vitro, and blocked communications between HUVECs and CRC cells. Overexpression of SELENBP1 in CRC cells inhibited tumor growth and angiogenesis, and enhanced bevacizumab-sensitivity in a mouse subcutaneous xenograft model. Mechanic analyses revealed that SELENBP1 may suppress tumor angiogenesis by binding with Delta-like ligand 4 (DLL4) and antagonizing the DLL4/Notch1 signaling pathway. The inhibitory effects of SELENBP1 on in vitro angiogenesis could largely be rescued by DLL4. CONCLUSION: These results revealed a novel role of SELENBP1 as a potential tumor suppressor that antagonizes tumor angiogenesis in CRC by intervening the DLL4/Notch1 signaling pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...