Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Enzymol ; 660: 21-52, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34742390

RESUMO

Biochemical pathways are compartmentalized in living cells. This permits each cell to maintain chemical compositions that differ between the cytosol, intracellular organelles and the external environment. Achieving this requires each compartment to be very selective in what is allowed to enter and leave. Nature has solved this by surrounding each cell and each organelle with a virtually solute impermeable lipid membrane, embedded with integral membrane proteins that mediate strictly controlled trans-membrane movement of matter and information. Access to pure and active integral membrane proteins is therefore required to comprehend membrane biology, ultimately through high-resolution structures of the membrane proteome and, therefore, also for our understanding of physiology. Unfortunately, apart from a few exceptions, membrane proteins cannot be purified from native tissue but need to be produced recombinantly, which is eminently challenging. This chapter shows how we have engineered yeast to provide high levels of prime quality membrane proteins of prokaryotic, archaeal or eukaryotic origin for structural biology.


Assuntos
Proteínas de Membrana , Saccharomyces cerevisiae , Células Eucarióticas , Proteínas de Membrana/química , Organelas/metabolismo , Proteoma/metabolismo , Saccharomyces cerevisiae/genética
2.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 4): 844-53, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25849395

RESUMO

Gene-expression changes observed in Drosophila embryos after inducing the transcription factor Tramtrack led to the identification of the protein Expansion. Expansion contains an N-terminal domain similar in sequence to the MH2 domain characteristic of Smad proteins, which are the central mediators of the effects of the TGF-ß signalling pathway. Apart from Smads and Expansion, no other type of protein belonging to the known kingdoms of life contains MH2 domains. To compare the Expansion and Smad MH2 domains, the crystal structure of the Expansion domain was determined at 1.6 Šresolution, the first structure of a non-Smad MH2 domain to be characterized to date. The structure displays the main features of the canonical MH2 fold with two main differences: the addition of an α-helical region and the remodelling of a protein-interaction site that is conserved in the MH2 domain of Smads. Owing to these differences, to the new domain was referred to as Nα-MH2. Despite the presence of the Nα-MH2 domain, Expansion does not participate in TGF-ß signalling; instead, it is required for other activities specific to the protostome phyla. Based on the structural similarities to the MH2 fold, it is proposed that the Nα-MH2 domain should be classified as a new member of the Smad/FHA superfamily.


Assuntos
Proteínas de Drosophila/química , Drosophila/química , Proteínas Smad/química , Proteína Smad2/química , Sequência de Aminoácidos , Animais , Cristalografia por Raios X , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mapas de Interação de Proteínas , Estrutura Terciária de Proteína , Alinhamento de Sequência , Transdução de Sinais , Proteínas Smad/metabolismo , Proteína Smad2/metabolismo , Fator de Crescimento Transformador beta/metabolismo
3.
RNA Biol ; 10(1): 149-56, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23291905

RESUMO

CsdA is one of five E. coli DEAD-box helicases and as a cold-shock protein assists RNA structural remodeling at low temperatures. The helicase has been shown to catalyze duplex unwinding in an ATP-dependent way and accelerate annealing of complementary RNAs, but detailed kinetic analyses are missing. Therefore, we performed kinetic measurements using a coupled annealing and strand displacement assay with high temporal resolution to analyze how CsdA balances the two converse activities. We furthermore tested the hypothesis that the unwinding activity of DEAD-box helicases is largely determined by the substrate's thermodynamic stability using full-length CsdA and a set of RNAs with constant length, but increasing GC content. The rate constants for strand displacement did indeed decrease with increasing duplex stability, with a calculated free energy between -31.3 and -40 kcal/mol being the limit for helix unwinding. Thus, our data generally support the above hypothesis, showing that for CsdA substrate thermal stability is an important rate limiting factor.


Assuntos
RNA Helicases DEAD-box/metabolismo , DNA Helicases/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , RNA/metabolismo , Composição de Bases , Pareamento de Bases , Sequência de Bases , Cinética , RNA/química , Dobramento de RNA , Estabilidade de RNA , RNA de Cadeia Dupla/química , RNA de Cadeia Dupla/metabolismo , Especificidade por Substrato , Termodinâmica
4.
Nucleic Acids Res ; 41(1): 487-97, 2013 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-23104381

RESUMO

Folding of RNA molecules into their functional three-dimensional structures is often supported by RNA chaperones, some of which can catalyse the two elementary reactions helix disruption and helix formation. Hfq is one such RNA chaperone, but its strand displacement activity is controversial. Whereas some groups found Hfq to destabilize secondary structures, others did not observe such an activity with their RNA substrates. We studied Hfq's activities using a set of short RNAs of different thermodynamic stabilities (GC-contents from 4.8% to 61.9%), but constant length. We show that Hfq's strand displacement as well as its annealing activity are strongly dependent on the substrate's GC-content. However, this is due to Hfq's preferred binding of AU-rich sequences and not to the substrate's thermodynamic stability. Importantly, Hfq catalyses both annealing and strand displacement with comparable rates for different substrates, hinting at RNA strand diffusion and annealing nucleation being rate-limiting for both reactions. Hfq's strand displacement activity is a result of the thermodynamic destabilization of the RNA through preferred single-strand binding whereas annealing acceleration is independent from Hfq's thermodynamic influence. Therefore, the two apparently disparate activities annealing acceleration and duplex destabilization are not in energetic conflict with each other.


Assuntos
Proteínas de Escherichia coli/metabolismo , Fator Proteico 1 do Hospedeiro/metabolismo , RNA de Cadeia Dupla/química , Composição de Bases , Citosina/química , Guanina/química , Peptídeos/metabolismo , RNA/química , RNA/metabolismo , Dobramento de RNA , RNA de Cadeia Dupla/metabolismo , Termodinâmica , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo
5.
PLoS One ; 7(11): e50892, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23226421

RESUMO

In Escherichia coli the RNA chaperone Hfq is involved in riboregulation by assisting base-pairing between small regulatory RNAs (sRNAs) and mRNA targets. Several structural and biochemical studies revealed RNA binding sites on either surface of the donut shaped Hfq-hexamer. Whereas sRNAs are believed to contact preferentially the YKH motifs present on the proximal site, poly(A)(15) and ADP were shown to bind to tripartite binding motifs (ARE) circularly positioned on the distal site. Hfq has been reported to bind and to hydrolyze ATP. Here, we present the crystal structure of a C-terminally truncated variant of E. coli Hfq (Hfq(65)) in complex with ATP, showing that it binds to the distal R-sites. In addition, we revisited the reported ATPase activity of full length Hfq purified to homogeneity. At variance with previous reports, no ATPase activity was observed for Hfq. In addition, FRET assays neither indicated an impact of ATP on annealing of two model oligoribonucleotides nor did the presence of ATP induce strand displacement. Moreover, ATP did not lead to destabilization of binary and ternary Hfq-RNA complexes, unless a vast stoichiometric excess of ATP was used. Taken together, these studies strongly suggest that ATP is dispensable for and does not interfere with Hfq-mediated RNA transactions.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Fator Proteico 1 do Hospedeiro/química , Fator Proteico 1 do Hospedeiro/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , RNA Bacteriano/metabolismo , Adenosina Trifosfatases/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Hidrólise , Ligantes , Modelos Moleculares , Renaturação de Ácido Nucleico , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo
6.
Nucleic Acids Res ; 40(16): 8072-84, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22718981

RESUMO

In enteric bacteria, many small regulatory RNAs (sRNAs) associate with the RNA chaperone host factor Q (Hfq) and often require the protein for regulation of target mRNAs. Previous studies suggested that the hexameric Escherichia coli Hfq (Hfq(Ec)) binds sRNAs on the proximal site, whereas the distal site has been implicated in Hfq-mRNA interactions. Employing a combination of small angle X-ray scattering, nuclear magnetic resonance and biochemical approaches, we report the structural analysis of a 1:1 complex of Hfq(Ec) with a 34-nt-long subsequence of a natural substrate sRNA, DsrA (DsrA(34)). This sRNA is involved in post-transcriptional regulation of the E. coli rpoS mRNA encoding the stationary phase sigma factor RpoS. The molecular envelopes of Hfq(Ec) in complex with DsrA(34) revealed an overall asymmetric shape of the complex in solution with the protein maintaining its doughnut-like structure, whereas the extended DsrA(34) is flexible and displays an ensemble of different spatial arrangements. These results are discussed in terms of a model, wherein the structural flexibility of RNA ligands bound to Hfq stochastically facilitates base pairing and provides the foundation for the RNA chaperone function inherent to Hfq.


Assuntos
Proteínas de Escherichia coli/química , Fator Proteico 1 do Hospedeiro/química , Pequeno RNA não Traduzido/química , Luz , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Conformação de Ácido Nucleico , Ligação Proteica , Espalhamento de Radiação , Espalhamento a Baixo Ângulo , Difração de Raios X
7.
Artigo em Inglês | MEDLINE | ID: mdl-21543856

RESUMO

The structure of full-length host factor Qß (Hfq) from Escherichia coli obtained from a crystal belonging to space group P1, with unit-cell parameters a = 61.91, b = 62.15, c = 81.26 Å, α = 78.6, ß = 86.2, γ = 59.9°, was solved by molecular replacement to a resolution of 2.85 Å and refined to R(work) and R(free) values of 20.7% and 25.0%, respectively. Hfq from E. coli has previously been crystallized and the structure has been solved for the N-terminal 72 amino acids, which cover ~65% of the full-length sequence. Here, the purification, crystallization and structural data of the full 102-amino-acid protein are presented. These data revealed that the presence of the C-terminus changes the crystal packing of E. coli Hfq. The crystal structure is discussed in the context of the recently published solution structure of Hfq from E. coli.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/química , Fator Proteico 1 do Hospedeiro/química , Cristalografia por Raios X , Modelos Moleculares , Estrutura Quaternária de Proteína
8.
Nucleic Acids Res ; 39(11): 4900-15, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21330354

RESUMO

The hexameric Escherichia coli RNA chaperone Hfq (Hfq(Ec)) is involved in riboregulation of target mRNAs by small trans-encoded RNAs. Hfq proteins of different bacteria comprise an evolutionarily conserved core, whereas the C-terminus is variable in length. Although the structure of the conserved core has been elucidated for several Hfq proteins, no structural information has yet been obtained for the C-terminus. Using bioinformatics, nuclear magnetic resonance spectroscopy, synchrotron radiation circular dichroism (SRCD) spectroscopy and small angle X-ray scattering we provide for the first time insights into the conformation and dynamic properties of the C-terminal extension of Hfq(Ec). These studies indicate that the C-termini are flexible and extend laterally away from the hexameric core, displaying in this way features typical of intrinsically disordered proteins that facilitate intermolecular interactions. We identified a minimal, intrinsically disordered region of the C-terminus supporting the interactions with longer RNA fragments. This minimal region together with rest of the C-terminal extension provides a flexible moiety capable of tethering long and structurally diverse RNA molecules. Furthermore, SRCD spectroscopy supported the hypothesis that RNA fragments exceeding a certain length interact with the C-termini of Hfq(Ec).


Assuntos
Proteínas de Escherichia coli/química , Fator Proteico 1 do Hospedeiro/química , Dicroísmo Circular , Biologia Computacional , Proteínas de Escherichia coli/genética , Fator Proteico 1 do Hospedeiro/genética , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , RNA/química , Deleção de Sequência
9.
Nucleic Acids Res ; 38(4): 1284-93, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19969548

RESUMO

At low temperature, translational activation of rpoS mRNA, encoding the stationary phase sigma-factor, sigma(S), involves the small regulatory RNA (sRNA) DsrA and the RNA chaperone Hfq. The Hfq-mediated DsrA-rpoS interaction relieves an intramolecular secondary structure that impedes ribosome access to the rpoS ribosome binding site. In addition, DsrA/rpoS duplex formation creates an RNase III cleavage site within the duplex. Previous biochemical studies suggested that DsrA and Hfq associate with the 30S ribosomal subunit protein S1, which implied a role for the ribosome in sRNA-mediated post-transcriptional regulation. Here, we show by ribosome profiling that Hfq partitions with the cytoplasmic fraction rather than with 30S subunits. Besides, by employing immunological techniques, no evidence for a physical interaction between Hfq and S1 was obtained. Similarly, in vitro studies did not reveal a direct interaction between DsrA and S1. By employing a ribosome binding deficient rpoS mRNA, and by using the RNase III clevage in the DsrA/rpoS duplex as a diagnostic marker, we provide in vivo evidence that the Hfq-mediated DsrA/rpoS interaction, and consequently the structural changes in rpoS mRNA precede ribosome binding. These data suggest a simple mechanistic model in which translational activation by DsrA provides a translationally competent rpoS mRNA to which 30S subunits can readily bind.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Fator Proteico 1 do Hospedeiro/metabolismo , Biossíntese de Proteínas , RNA não Traduzido/metabolismo , Fator sigma/genética , Proteínas de Bactérias/biossíntese , Western Blotting , Citoplasma/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/análise , Proteínas de Escherichia coli/biossíntese , Proteínas de Escherichia coli/metabolismo , Fator Proteico 1 do Hospedeiro/análise , RNA Mensageiro/química , Pequeno RNA não Traduzido , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Menores de Bactérias/metabolismo , Ribossomos/metabolismo , Fator sigma/biossíntese
10.
J Med Chem ; 51(5): 1459-63, 2008 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-18269227

RESUMO

AMPA-type ionotropic glutamate receptors generally display high stereoselectivity in agonist binding. However, the stereoisomers of 2-amino-3-(4-hydroxy-1,2,5-thiadiazol-3-yl)propionic acid (TDPA) have similar enantiopharmacology. To understand this observation, we have determined the X-ray structures of ( R)-TDPA and ( S)-TDPA in complex with the ligand-binding core of iGluR2 and investigated the binding pharmacology at AMPA and kainate receptors. Both enantiomers induce full domain closure in iGluR2 but adopt different conformations when binding to the receptor, which may explain the similar enantiopharmacology.


Assuntos
Alanina/análogos & derivados , Modelos Moleculares , Receptores de AMPA/agonistas , Receptores de AMPA/química , Tiadiazóis/química , Alanina/química , Sítios de Ligação , Cristalografia por Raios X , Ligantes , Ensaio Radioligante , Receptores de AMPA/genética , Proteínas Recombinantes/agonistas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Estereoisomerismo , Relação Estrutura-Atividade
11.
Cell ; 127(1): 85-97, 2006 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-17018279

RESUMO

The canonical conformational states occupied by most ligand-gated ion channels, and many cell-surface receptors, are the resting, activated, and desensitized states. While the resting and activated states of multiple receptors are well characterized, elaboration of the structural properties of the desensitized state, a state that is by definition inactive, has proven difficult. Here we use electrical, chemical, and crystallographic experiments on the AMPA-sensitive GluR2 receptor, defining the conformational rearrangements of the agonist binding cores that occur upon desensitization of this ligand-gated ion channel. These studies demonstrate that desensitization involves the rupture of an extensive interface between domain 1 of 2-fold related glutamate-binding core subunits, compensating for the ca. 21 degrees of domain closure induced by glutamate binding. The rupture of the domain 1 interface allows the ion channel to close and thereby provides a simple explanation to the long-standing question of how agonist binding is decoupled from ion channel gating upon receptor desensitization.


Assuntos
Estrutura Quaternária de Proteína , Receptores de AMPA/química , Receptores de AMPA/metabolismo , Animais , Linhagem Celular , Cristalografia por Raios X , Cisteína/química , Dimerização , Dissulfetos/química , Eletrofisiologia , Ácido Glutâmico/metabolismo , Humanos , Mesilatos/química , Modelos Moleculares , Dados de Sequência Molecular , Oócitos/fisiologia , Mutação Puntual , Ratos , Receptores de AMPA/genética , Reagentes de Sulfidrila/química , Xenopus laevis , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...