Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38746369

RESUMO

Analysis of system-wide cellular communication changes in Alzheimer's disease (AD) has recently been enabled by single nucleus RNA sequencing (snRNA-seq) and new computational methods. Here, we combined these to analyze data from postmortem human tissue from the entorhinal cortex of AD patients and compared our findings to those from multiomic data from the 5xFAD amyloidogenic mouse model at two different time points. Using the cellular communication inference tool CellChat we found that disease-related changes were largely related to neuronal excitability as well as synaptic communication, with specific signaling pathways including BMP, EGF, and EPHA, and relatively poor conservation of glial-related changes during disease. Further analysis using the neuron-specific NeuronChat revealed changes relating to metabotropic glutamate receptors as well as neuronal adhesion molecules including neurexins and neuroligins. Our results that cellular processes relating to excitotoxicity are the best conserved between 5xFAD mice and AD suggest that excitotoxicity is the main common feature between pathogenesis in 5xFAD mice and AD patients.

2.
bioRxiv ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38712160

RESUMO

Use of one drug of abuse typically influences the behavioral response to other drugs, either administered at the same time or a subsequent time point. The nature of the drugs being used, as well as the timing and dosing, also influence how these drugs interact. Here, we tested the effects of adolescent THC exposure on the development of morphine-induced behavioral adaptations following repeated morphine exposure during adulthood. We found that adolescent THC administration impacted morphine-induced behaviors across several dimensions, including potentiating reward and paradoxically impairing the development of morphine reward. We then mapped the whole-brain response to a reinstatement dose of morphine, finding that adolescent THC administration led to increased activity in the basal ganglia and increased functional connectivity between frontal cortical regions and the ventral tegmental area. Last, we show using rabies virus-based circuit mapping that adolescent THC exposure triggers a long-lasting elevation in connectivity from the frontal cortex regions onto ventral tegmental dopamine cells that has the potential to influence dopaminergic response to morphine administration during adulthood. Our study adds to the rich literature on the interaction between drugs of abuse and provides potential circuit substates by which adolescent THC exposure influences responses to morphine later in life.

3.
bioRxiv ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38746090

RESUMO

The anterior cingulate cortex plays a pivotal role in the cognitive and affective aspects of pain perception. Both endogenous and exogenous opioid signaling within the cingulate mitigate cortical nociception, reducing pain unpleasantness. However, the specific functional and molecular identities of cells mediating opioid analgesia in the cingulate remain elusive. Given the complexity of pain as a sensory and emotional experience, and the richness of ethological pain-related behaviors, we developed a standardized, deep-learning platform for deconstructing the behavior dynamics associated with the affective component of pain in mice-LUPE (Light aUtomated Pain Evaluator). LUPE removes human bias in behavior quantification and accelerated analysis from weeks to hours, which we leveraged to discover that morphine altered attentional and motivational pain behaviors akin to affective analgesia in humans. Through activity-dependent genetics and single-nuclei RNA sequencing, we identified specific ensembles of nociceptive cingulate neuron-types expressing mu-opioid receptors. Tuning receptor expression in these cells bidirectionally modulated morphine analgesia. Moreover, we employed a synthetic opioid receptor promoter-driven approach for cell-type specific optical and chemical genetic viral therapies to mimic morphine's pain-relieving effects in the cingulate, without reinforcement. This approach offers a novel strategy for precision pain management by targeting a key nociceptive cortical circuit with on-demand, non-addictive, and effective analgesia.

4.
Curr Biol ; 34(1): 12-23.e5, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38096820

RESUMO

Sleep disturbances are detrimental to our behavioral and emotional well-being. Stressful events disrupt sleep, in particular by inducing brief awakenings (microarousals, MAs), resulting in sleep fragmentation. The preoptic area of the hypothalamus (POA) is crucial for sleep control. However, how POA neurons contribute to the regulation of MAs and thereby impact sleep quality is unknown. Using fiber photometry in mice, we examine the activity of genetically defined POA subpopulations during sleep. We find that POA glutamatergic neurons are rhythmically activated in synchrony with an infraslow rhythm in the spindle band of the electroencephalogram during non-rapid eye movement sleep (NREMs) and are transiently activated during MAs. Optogenetic stimulation of these neurons promotes MAs and wakefulness. Exposure to acute social defeat stress fragments NREMs and significantly increases the number of transients in the calcium activity of POA glutamatergic neurons during NREMs. By reducing MAs, optogenetic inhibition during spontaneous sleep and after stress consolidates NREMs. Monosynaptically restricted rabies tracing reveals that POA glutamatergic neurons are innervated by brain regions regulating stress and sleep. In particular, presynaptic glutamatergic neurons in the lateral hypothalamus become activated after stress, and stimulating their projections to the POA promotes MAs and wakefulness. Our findings uncover a novel circuit mechanism by which POA excitatory neurons regulate sleep quality after stress.


Assuntos
Privação do Sono , Sono , Camundongos , Animais , Sono/fisiologia , Hipotálamo/fisiologia , Área Pré-Óptica/fisiologia , Neurônios/fisiologia , Vigília/fisiologia
5.
Res Sq ; 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38045269

RESUMO

Administration of the Zeta Inhibitory Peptide (ZIP) interferes with memory maintenance and long-term potentiation (LTP). However, mice lacking its putative target, the protein kinase PKMζ, exhibit normal learning and memory as well as LTP, making ZIP's mechanism unclear. Here, we show that ZIP disrupts LTP by removing surface AMPA receptors through its cationic charge alone. This effect was fully blocked by drugs that block macropinocytosis and is dependent on endophilin A2 (endoA2)-mediated endocytosis. ZIP and other cationic peptides selectively removed newly inserted AMPAR nanoclusters, providing a mechanism by which these peptides erase memories without effects on basal synaptic function. Lastly, cationic peptides can be administered locally and/or systemically and can be combined with local microinjection of macropinocytosis inhibitors to modulate memories on local and brain-wide scales. Our findings have critical implications for an entire field of memory mechanisms and highlight a previously unappreciated mechanism by which memories can be lost.

6.
Nat Neurosci ; 26(10): 1820-1832, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37735498

RESUMO

Rapid eye movement (REM) sleep is accompanied by intense cortical activity, underlying its wake-like electroencephalogram. The neural activity inducing REM sleep is thought to originate from subcortical circuits in brainstem and hypothalamus. However, whether cortical neurons can also trigger REM sleep has remained unknown. Here we show in mice that the medial prefrontal cortex (mPFC) strongly promotes REM sleep. Bidirectional optogenetic manipulations demonstrate that excitatory mPFC neurons promote REM sleep through their projections to the lateral hypothalamus and regulate phasic events, reflected in accelerated electroencephalogram theta oscillations and increased eye movement density during REM sleep. Calcium imaging reveals that the majority of lateral hypothalamus-projecting mPFC neurons are maximally activated during REM sleep and a subpopulation is recruited during phasic theta accelerations. Our results delineate a cortico-hypothalamic circuit for the top-down control of REM sleep and identify a critical role of the mPFC in regulating phasic events during REM sleep.


Assuntos
Neurônios , Sono REM , Camundongos , Animais , Sono REM/fisiologia , Neurônios/fisiologia , Hipotálamo/fisiologia , Córtex Pré-Frontal/fisiologia , Região Hipotalâmica Lateral , Sono/fisiologia
7.
Front Psychiatry ; 14: 1085036, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36911117

RESUMO

Achieving abstinence from drugs is a long journey and can be particularly challenging in the case of methamphetamine, which has a higher relapse rate than other drugs. Therefore, real-time monitoring of patients' physiological conditions before and when cravings arise to reduce the chance of relapse might help to improve clinical outcomes. Conventional treatments, such as behavior therapy and peer support, often cannot provide timely intervention, reducing the efficiency of these therapies. To more effectively treat methamphetamine addiction in real-time, we propose an intelligent closed-loop transcranial magnetic stimulation (TMS) neuromodulation system based on multimodal electroencephalogram-functional near-infrared spectroscopy (EEG-fNIRS) measurements. This review summarizes the essential modules required for a wearable system to treat addiction efficiently. First, the advantages of neuroimaging over conventional techniques such as analysis of sweat, saliva, or urine for addiction detection are discussed. The knowledge to implement wearable, compact, and user-friendly closed-loop systems with EEG and fNIRS are reviewed. The features of EEG and fNIRS signals in patients with methamphetamine use disorder are summarized. EEG biomarkers are categorized into frequency and time domain and topography-related parameters, whereas for fNIRS, hemoglobin concentration variation and functional connectivity of cortices are described. Following this, the applications of two commonly used neuromodulation technologies, transcranial direct current stimulation and TMS, in patients with methamphetamine use disorder are introduced. The challenges of implementing intelligent closed-loop TMS modulation based on multimodal EEG-fNIRS are summarized, followed by a discussion of potential research directions and the promising future of this approach, including potential applications to other substance use disorders.

8.
Neuron ; 110(18): 3018-3035.e7, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-35921846

RESUMO

Nicotine stimulates the dopamine (DA) system, which is essential for its rewarding effect. Nicotine is also aversive at high doses; yet, our knowledge about nicotine's dose-dependent effects on DA circuits remains limited. Here, we demonstrate that high doses of nicotine, which induce aversion-related behavior in mice, cause biphasic inhibitory and excitatory responses in VTA DA neurons that can be dissociated by distinct projections to lateral and medial nucleus accumben subregions, respectively. Guided by computational modeling, we performed a pharmacological investigation to establish that inhibitory effects of aversive nicotine involve desensitization of α4ß2 and activation of α7 nicotinic acetylcholine receptors. We identify α7-dependent activation of upstream GABA neurons in the laterodorsal tegmentum (LDT) as a key regulator of heterogeneous DA release following aversive nicotine. Finally, inhibition of LDT GABA terminals in VTA prevents nicotine aversion. Together, our findings provide a mechanistic circuit-level understanding of nicotine's dose-dependent effects on reward and aversion.


Assuntos
Nicotina , Receptores Nicotínicos , Animais , Dopamina/fisiologia , Neurônios Dopaminérgicos/metabolismo , Camundongos , Nicotina/farmacologia , Receptores Nicotínicos/metabolismo , Área Tegmentar Ventral/fisiologia , Receptor Nicotínico de Acetilcolina alfa7 , Ácido gama-Aminobutírico/farmacologia
9.
Front Mol Neurosci ; 15: 971349, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35935333

RESUMO

Dysfunction in dopamine (DA) signaling contributes to neurological disorders ranging from drug addiction and schizophrenia to depression and Parkinson's Disease. How might impairment of one neurotransmitter come to effect these seemingly disparate diseases? One potential explanation is that unique populations of DA-releasing cells project to separate brain regions that contribute to different sets of behaviors. Though dopaminergic cells themselves are spatially restricted to the midbrain and constitute a relatively small proportion of all neurons, their projections influence many brain regions. DA is particularly critical for the activity and function of medial prefrontal cortical (mPFC) ensembles. The midbrain and mPFC exhibit reciprocal connectivity - the former innervates the mPFC, and in turn, the mPFC projects back to the midbrain. Viral mapping studies have helped elucidate the connectivity within and between these regions, which likely have broad implications for DA-dependent behaviors. In this review, we discuss advancements in our understanding of the connectivity between the mPFC and midbrain DA system, focusing primarily on rodent models.

10.
Cell Rep ; 39(5): 110775, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35508124

RESUMO

Although midbrain dopamine (DA) circuits are central to motivated behaviors, our knowledge of how experience modifies these circuits to facilitate subsequent behavioral adaptations is limited. Here we demonstrate the selective role of a ventral tegmental area DA projection to the amygdala (VTADA→amygdala) for cocaine-induced anxiety but not cocaine reward or sensitization. Our rabies virus-mediated circuit mapping approach reveals a persistent elevation in spontaneous and task-related activity of inhibitory GABAergic cells from the bed nucleus of the stria terminalis (BNST) and downstream VTADA→amygdala cells that can be detected even after a single cocaine exposure. Activity in BNSTGABA→midbrain cells is related to cocaine-induced anxiety but not reward or sensitization, and silencing this projection prevents development of anxiety during protracted withdrawal after cocaine administration. Finally, we observe that VTADA→amygdala cells are strongly activated after a challenge exposure to cocaine and that activity in these cells is necessary and sufficient for reinstatement of cocaine place preference.


Assuntos
Transtornos Relacionados ao Uso de Cocaína , Cocaína , Tonsila do Cerebelo , Ansiedade , Cocaína/efeitos adversos , Dopamina , Humanos , Área Tegmentar Ventral
11.
Adv Physiol Educ ; 46(1): 77-83, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34793264

RESUMO

Graduate physiology programs strive to provide students with in-depth expertise in a particular academic discipline, often facilitating this process in the form of a departmental seminar course. Within the Department of Physiology and Biophysics at the University of California Irvine (UCI), students are required to attend a seminar course, most often designed as a journal club, each quarter until they are ready to graduate. While this format may work well in departments where research topics are closely related, it has historically been less successful in UCI's Department of Physiology and Biophysics, where wide-ranging interests make for little overlap in foundational knowledge, limiting meaningful engagement with the material or with peers in the class. In this paper, we describe a complementary approach of developing a syllabus around student interests and covering topics that are critical for student success but often omitted from graduate curricula, such as interview skills, grant writing, and scientific communication. Results from our preclass survey motivated this approach to the class, and our retrospective survey demonstrated the substantial differences in student engagement, enthusiasm, and perceived benefits of this course relative to the journal club style course. We hope that the success of our course may serve as an exemplar for strategies to engage students more effectively and provide critical training in diverse skillsets that will help students after graduation.


Assuntos
Currículo , Estudantes , Logro , Humanos , Estudos Retrospectivos , Redação
12.
Nature ; 599(7883): 96-101, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34616037

RESUMO

Social memory-the ability to recognize and remember familiar conspecifics-is critical for the survival of an animal in its social group1,2. The dorsal CA2 (dCA2)3-5 and ventral CA1 (vCA1)6 subregions of the hippocampus, and their projection targets6,7, have important roles in social memory. However, the relevant extrahippocampal input regions remain poorly defined. Here we identify the medial septum (MS) as a dCA2 input region that is critical for social memory and reveal that modulation of the MS by serotonin (5-HT) bidirectionally controls social memory formation, thereby affecting memory stability. Novel social interactions increase activity in dCA2-projecting MS neurons and induce plasticity at glutamatergic synapses from MS neurons onto dCA2 pyramidal neurons. The activity of dCA2-projecting MS cells is enhanced by the neuromodulator 5-HT acting on 5-HT1B receptors. Moreover, optogenetic manipulation of median raphe 5-HT terminals in the MS bidirectionally regulates social memory stability. This work expands our understanding of the neural mechanisms by which social interactions lead to social memory and provides evidence that 5-HT has a critical role in promoting not only prosocial behaviours8,9, but also social memory, by influencing distinct target structures.


Assuntos
Memória/fisiologia , Vias Neurais , Núcleos Septais/fisiologia , Serotonina/metabolismo , Comportamento Social , Animais , Região CA2 Hipocampal/citologia , Região CA2 Hipocampal/fisiologia , Feminino , Ácido Glutâmico/metabolismo , Masculino , Camundongos , Plasticidade Neuronal , Optogenética , Células Piramidais/metabolismo , Receptor 5-HT1B de Serotonina/metabolismo , Núcleos Septais/citologia , Sinapses/metabolismo
13.
Brain Stimul ; 14(5): 1226-1233, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34400379

RESUMO

OBJECTIVE: Deep brain stimulation (DBS) has been used as a treatment of last resort for treatment-resistant depression (TRD) for more than a decade. Many DBS targets have been proposed and tested clinically, but the underlying circuit mechanisms remain unclear. Uncovering white matter tracts (WMT) activated by DBS targets may provide crucial information about the circuit substrates mediating DBS efficacy in ameliorating TRD. METHODS: We performed probabilistic tractography using diffusion magnetic resonance imaging datas from 100 healthy volunteers in Human Connectome Project datasets to analyze the structural connectivity patterns of stimulation targeting currently-used DBS target for TRD. We generated mean and binary fiber distribution maps and calculated the numbers of WMT streamlines in the dataset. RESULTS: Probabilistic tracking results revealed that activation of distinct DBS targets demonstrated modulation of overlapping but considerably distinct pathways. DBS targets were categorized into 4 groups: Cortical, Striatal, Thalamic, and Medial Forebrain Bundle according to their main modulated WMT and brain areas. Our data also revealed that Brodmann area 10 and amygdala are hub structures that are associated with all DBS targets. CONCLUSIONS: Our results together suggest that the distinct mechanism of DBS targets implies individualized target selection and formulation in the future of DBS treatment for TRD. The modulation of Brodmann area 10 and amygdala may be critical for the efficacy of DBS-mediated treatment of TRD.


Assuntos
Conectoma , Estimulação Encefálica Profunda , Transtorno Depressivo Resistente a Tratamento , Depressão , Transtorno Depressivo Resistente a Tratamento/diagnóstico por imagem , Transtorno Depressivo Resistente a Tratamento/terapia , Humanos , Feixe Prosencefálico Mediano
14.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34088841

RESUMO

Cerebellar granule cells (GrCs) are usually regarded as a uniform cell type that collectively expands the coding space of the cerebellum by integrating diverse combinations of mossy fiber inputs. Accordingly, stable molecularly or physiologically defined GrC subtypes within a single cerebellar region have not been reported. The only known cellular property that distinguishes otherwise homogeneous GrCs is the correspondence between GrC birth timing and the depth of the molecular layer to which their axons project. To determine the role birth timing plays in GrC wiring and function, we developed genetic strategies to access early- and late-born GrCs. We initiated retrograde monosynaptic rabies virus tracing from control (birth timing unrestricted), early-born, and late-born GrCs, revealing the different patterns of mossy fiber input to GrCs in vermis lobule 6 and simplex, as well as to early- and late-born GrCs of vermis lobule 6: sensory and motor nuclei provide more input to early-born GrCs, while basal pontine and cerebellar nuclei provide more input to late-born GrCs. In vivo multidepth two-photon Ca2+ imaging of axons of early- and late-born GrCs revealed representations of diverse task variables and stimuli by both populations, with modest differences in the proportions encoding movement, reward anticipation, and reward consumption. Our results suggest neither organized parallel processing nor completely random organization of mossy fiber→GrC circuitry but instead a moderate influence of birth timing on GrC wiring and encoding. Our imaging data also provide evidence that GrCs can represent generalized responses to aversive stimuli, in addition to recently described reward representations.


Assuntos
Córtex Cerebelar/crescimento & desenvolvimento , Fibras Nervosas/metabolismo , Animais , Animais Recém-Nascidos , Córtex Cerebelar/virologia , Camundongos , Camundongos Transgênicos , Fibras Nervosas/virologia , Vírus da Raiva/metabolismo
15.
Front Neural Circuits ; 15: 799688, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35153681

RESUMO

Decades of research have revealed the remarkable complexity of the midbrain dopamine (DA) system, which comprises cells principally located in the ventral tegmental area (VTA) and substantia nigra pars compacta (SNc). Neither homogenous nor serving a singular function, the midbrain DA system is instead composed of distinct cell populations that (1) receive different sets of inputs, (2) project to separate forebrain sites, and (3) are characterized by unique transcriptional and physiological signatures. To appreciate how these differences relate to circuit function, we first need to understand the anatomical connectivity of unique DA pathways and how this connectivity relates to DA-dependent motivated behavior. We and others have provided detailed maps of the input-output relationships of several subpopulations of midbrain DA cells and explored the roles of these different cell populations in directing behavioral output. In this study, we analyze VTA inputs and outputs as a high dimensional dataset (10 outputs, 22 inputs), deploying computational techniques well-suited to finding interpretable patterns in such data. In addition to reinforcing our previous conclusion that the connectivity in the VTA is dependent on spatial organization, our analysis also uncovered a set of inputs elevated onto each projection-defined VTADA cell type. For example, VTADA→NAcLat cells receive preferential innervation from inputs in the basal ganglia, while VTADA→Amygdala cells preferentially receive inputs from populations sending a distributed input across the VTA, which happen to be regions associated with the brain's stress circuitry. In addition, VTADA→NAcMed cells receive ventromedially biased inputs including from the preoptic area, ventral pallidum, and laterodorsal tegmentum, while VTADA→mPFC cells are defined by dominant inputs from the habenula and dorsal raphe. We also go on to show that the biased input logic to the VTADA cells can be recapitulated using projection architecture in the ventral midbrain, reinforcing our finding that most input differences identified using rabies-based (RABV) circuit mapping reflect projection archetypes within the VTA.


Assuntos
Substância Negra , Área Tegmentar Ventral , Dopamina/metabolismo , Lógica , Tegmento Mesencefálico , Área Tegmentar Ventral/fisiologia
16.
J Neurosci Methods ; 348: 109005, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33227339

RESUMO

Viruses have proved instrumental to elucidating neuronal connectivity relationships in a variety of organisms. Recent advances in genetic technologies have facilitated analysis of neurons directly connected to a defined starter population. These advances have also made viral transneuronal mapping available to the broader neuroscience community, where one-step rabies virus mapping has become routine. This method is commonly used to identify inputs onto defined cell populations, to demonstrate the quantitative proportion of inputs coming from specific brain regions, or to compare input patterns between two or more cell populations. Furthermore, the number of inputs labeled is often assumed to reflect the number of synaptic connections, and these viruses are commonly believed to label strong synapses more efficiently than weak synapses. While these maps are often interpreted to provide a quantitative estimate of the synaptic landscape onto starter cell populations, in fact very little is known about how transneuronal transmission takes place. We do not know how these viruses transmit between neurons, if they display biases in the cell types labeled, or even if transmission is synapse-specific. In this review, we discuss the experimental evidence against or in support of key concepts in viral tracing, focusing mostly on the use of one-step rabies input mapping and related methods. Does spread of these viruses occur specifically through synaptic connections, preferentially through synapses, or non-specifically? How efficient is viral transneuronal transmission, and is this efficiency equal in all cell types? And lastly, to what extent does viral labeling reflect functional connectivity?


Assuntos
Vírus da Raiva , Sinapses , Neurônios
17.
Neuron ; 107(6): 1029-1047, 2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32755550

RESUMO

Viral tracers are important tools for neuroanatomical mapping and genetic payload delivery. Genetically modified viruses allow for cell-type-specific targeting and overcome many limitations of non-viral tracers. Here, we summarize the viruses that have been developed for neural circuit mapping, and we provide a primer on currently applied anterograde and retrograde viral tracers with practical guidance on experimental uses. We also discuss and highlight key technical and conceptual considerations for developing new safer and more effective anterograde trans-synaptic viral vectors for neural circuit analysis in multiple species.


Assuntos
Conectoma/métodos , Técnicas de Rastreamento Neuroanatômico/métodos , Sinapses/fisiologia , Vírus/genética , Animais , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Humanos , Vias Neurais/citologia , Vias Neurais/fisiologia , Sinapses/metabolismo , Vírus/metabolismo
18.
Neuron ; 106(6): 1026-1043.e9, 2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32294466

RESUMO

The central amygdala (CeA) orchestrates adaptive responses to emotional events. While CeA substrates for defensive behaviors have been studied extensively, CeA circuits for appetitive behaviors and their relationship to threat-responsive circuits remain poorly defined. Here, we demonstrate that the CeA sends robust inhibitory projections to the lateral substantia nigra (SNL) that contribute to appetitive and aversive learning in mice. CeA→SNL neural responses to appetitive and aversive stimuli were modulated by expectation and magnitude consistent with a population-level salience signal, which was required for Pavlovian conditioned reward-seeking and defensive behaviors. CeA→SNL terminal activation elicited reinforcement when linked to voluntary actions but failed to support Pavlovian associations that rely on incentive value signals. Consistent with a disinhibitory mechanism, CeA inputs preferentially target SNL GABA neurons, and CeA→SNL and SNL dopamine neurons respond similarly to salient stimuli. Collectively, our results suggest that amygdala-nigra interactions represent a previously unappreciated mechanism for influencing emotional behaviors.


Assuntos
Comportamento Apetitivo/fisiologia , Aprendizagem da Esquiva/fisiologia , Núcleo Central da Amígdala/fisiologia , Neurônios Dopaminérgicos/fisiologia , Neurônios GABAérgicos/fisiologia , Substância Negra/fisiologia , Animais , Condicionamento Clássico/fisiologia , Emoções , Camundongos , Vias Neurais , Reforço Psicológico , Recompensa , Substância Negra/citologia
19.
Neuron ; 106(1): 37-65.e5, 2020 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-32027825

RESUMO

The Cre-loxP system is invaluable for spatial and temporal control of gene knockout, knockin, and reporter expression in the mouse nervous system. However, we report varying probabilities of unexpected germline recombination in distinct Cre driver lines designed for nervous system-specific recombination. Selective maternal or paternal germline recombination is showcased with sample Cre lines. Collated data reveal germline recombination in over half of 64 commonly used Cre driver lines, in most cases with a parental sex bias related to Cre expression in sperm or oocytes. Slight differences among Cre driver lines utilizing common transcriptional control elements affect germline recombination rates. Specific target loci demonstrated differential recombination; thus, reporters are not reliable proxies for another locus of interest. Similar principles apply to other recombinase systems and other genetically targeted organisms. We hereby draw attention to the prevalence of germline recombination and provide guidelines to inform future research for the neuroscience and broader molecular genetics communities.


Assuntos
Marcação de Genes/métodos , Integrases/genética , Neurônios/metabolismo , Oócitos/metabolismo , Recombinação Genética/genética , Espermatozoides/metabolismo , Animais , Feminino , Genes Reporter , Células Germinativas , Masculino , Camundongos , Camundongos Transgênicos , Mosaicismo
20.
Neuron ; 104(5): 916-930.e5, 2019 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-31759807

RESUMO

Drugs of abuse elicit powerful experiences that engage populations of neurons broadly distributed throughout the brain. To determine how synaptic connectivity is organized to enable robust communication between populations of drug-activated neurons, we developed a complementary targeting system for monosynaptic rabies virus (RV) tracing that identifies direct inputs to activated versus nonactivated neuronal populations. Analysis of over 100,000 synaptic input neurons demonstrated that cocaine-activated neurons comprise selectively connected but broadly distributed corticostriatal networks. Electrophysiological assays using optogenetics to stimulate activated versus nonactivated inputs revealed stronger synapses between coactivated cortical pyramidal neurons and neurons in the dorsal striatum (DS). Repeated cocaine exposure further enhanced the connectivity specifically between drug-activated neurons in the orbitofrontal cortex (OFC) and coactive DS neurons. Selective chemogenetic silencing of cocaine-activated OFC neurons or their terminals in the DS disrupted behavioral sensitization, demonstrating the utility of this methodology for identifying novel circuit elements that contribute to behavioral plasticity.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/efeitos dos fármacos , Cocaína/farmacologia , Inibidores da Captação de Dopamina/farmacologia , Vias Neurais/efeitos dos fármacos , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Optogenética/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...