Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
JAMA Oncol ; 7(1): 107-110, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33151258

RESUMO

IMPORTANCE: Cell-free DNA (cfDNA) testing is increasingly used in the treatment of patients with advanced prostate cancer. Clonal hematopoiesis of indeterminate potential (CHIP) can interfere with cfDNA testing and cause incorrect interpretation of results. There is an urgent need to better understand this problem following recent US Food and Drug Administration approval of poly(ADP) ribose polymerase inhibitors (PARPi) for metastatic prostate cancer based on variants in DNA repair genes that can be affected by CHIP. OBJECTIVE: To determine the prevalence of clinically relevant CHIP interference in prostate cancer cfDNA testing. DESIGN, SETTING, AND PARTICIPANTS: We report a case series of 69 patients with advanced prostate cancer (metastatic disease or with rising PSA following localized therapy) who had cfDNA variant testing with a large panel cancer next generation sequencing assay (UW-OncoPlexCT). To determine the source of variants in plasma, we tested paired cfDNA and whole blood control samples. The study was carried out in an academic medical center system reference laboratory. MAIN OUTCOMES AND MEASURES: Prevalence and gene spectrum of CHIP interference in patients with prostate cancer undergoing cfDNA testing. RESULTS: We detected CHIP variants at 2% or more variant fraction in cfDNA from 13 of 69 men with prostate cancer (19%; 95% CI, 10%-30%). Seven men (10%; 95% CI, 4%-20%) had CHIP variants in DNA repair genes used to determine PARPi candidacy, including ATM (n = 5), BRCA2 (n = 1), and CHEK2 (n = 1). Overall, CHIP variants accounted for almost half of the somatic DNA repair gene variants detected. Participant CHIP variants were exponentially correlated with older age (R2 = 0.82). CHIP interference variants could be distinguished from prostate cancer variants using a paired whole-blood control. CONCLUSIONS AND RELEVANCE: In this case series, approximately 10% of men with advanced prostate cancer had CHIP interference in plasma cfDNA in DNA repair genes that are used for eligibility of PARPi therapy, most frequently in ATM. Clinical cfDNA testing should include a paired whole-blood control to exclude CHIP variants and avoid misdiagnosis.


Assuntos
Ácidos Nucleicos Livres , Neoplasias da Próstata , Ácidos Nucleicos Livres/genética , Hematopoiese Clonal , Reparo do DNA/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética
2.
Pract Lab Med ; 19: e00153, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32123717

RESUMO

OBJECTIVES: The rapid discovery of clinically significant genetic variants has translated to next-generation sequencing assays becoming out-of-date by the time they are designed, validated, and implemented. UW-OncoPlex addresses this through the adoption of a modular panel capable of redesign as significant alterations are identified. We describe the validation of OncoPlex version 6 (OPXv6) for the detection of single nucleotide variants (SNVs), insertions and deletions (indels), copy number variants (CNVs), structural variants (SVs), microsatellite instability (MSI), and tumor mutational burden (TMB) in a panel of 340 genes. DESIGN: One hundred twelve samples with diverse diagnoses were comprised of formalin-fixed-paraffin-embedded tissue, fresh-frozen tissue, plasma, peripheral blood, bone marrow, saliva, and cell-line DNA. Libraries were prepared from genomic and cell-free DNA, hybridized to a custom panel of xGen Lockdown probes, and sequenced on Illumina platforms. Sequences were processed through a custom bioinformatics pipeline, and variant calls were compared to prior orthogonal clinical results. RESULTS: Accuracy was 99% for SNVs ≥5% allele frequency, 98% for indels, 97% for SVs, 99% for CNVs, 100% for MSI, and 100% for TMB (compared to previous OncoPlex versions). Library preparation turnaround time decreased by 40%, and sequencing quality improved with a 2.5-fold increase in average sequencing coverage and 4-fold increase in percent on-target. CONCLUSIONS: OPXv6 demonstrates improvements over prior UW-OncoPlex versions including reduced capture cost, improved sequencing quality, and decreased time to results. The modular capture probe design also provides a nimble laboratory response in addressing the expansions necessary to meet the needs of the continuously evolving field of molecular oncology.

3.
Prostate ; 79(7): 701-708, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30865311

RESUMO

BACKGROUND: Plasma-based cell-free DNA is an attractive biospecimen for assessing somatic mutations due to minimally-invasive real-time sampling. However, next generation sequencing (NGS) of cell-free DNA (cfDNA) may not be appropriate for all patients with advanced prostate cancer (PC). METHODS: Blood was obtained from advanced PC patients for plasma-based sequencing. UW-OncoPlex, a ∼2 Mb multi-gene NGS panel performed in the CLIA/CAP environment, was optimized for detecting cfDNA mutations. Tumor tissue and germline samples were sequenced for comparative analyses. Multivariate logistic regression was performed to determine the clinical characteristic associated with the successful detection of somatic cfDNA alterations (ie detection of at least one clearly somatic PC mutation). RESULTS: Plasma for cfDNA sequencing was obtained from 93 PC patients along with tumor tissue (N = 67) and germline (N = 93) controls. We included data from 76 patients (72 prostate adenocarcinoma; 4 variant histology PC) in the analysis. Somatic DNA aberrations were detected in 34 cfDNA samples from patients with prostate adenocarcinoma. High PSA level, high tumor volume, and castration-resistance were significantly associated with successful detection of somatic cfDNA alterations. Among samples with somatic mutations detected, the cfDNA assay detected 93/102 (91%) alterations found in tumor tissue, yielding a clustering-corrected sensitivity of 92% (95% confidence interval 88-97%). All germline pathogenic variants present in lymphocyte DNA were also detected in cfDNA (N = 12). Somatic mutations from cfDNA were detected in 30/33 (93%) instances when PSA was >10 ng/mL. CONCLUSIONS: Disease burden, including a PSA >10 ng/mL, is strongly associated with detecting somatic mutations from cfDNA specimens.


Assuntos
Adenocarcinoma/sangue , Adenocarcinoma/química , Biomarcadores Tumorais/análise , DNA Tumoral Circulante/análise , Neoplasias da Próstata/sangue , Neoplasias da Próstata/química , Adenocarcinoma/genética , Adenocarcinoma/patologia , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , DNA Tumoral Circulante/sangue , DNA Tumoral Circulante/genética , Efeitos Psicossociais da Doença , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Mutação , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia
4.
JAMA Oncol ; 4(6): 806-813, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29596542

RESUMO

Importance: Universal tumor screening for Lynch syndrome (LS) in colorectal cancer (CRC) is recommended and involves up to 6 sequential tests. Somatic gene testing is performed on stage IV CRCs for treatment determination. The diagnostic workup for patients with CRC could be simplified and improved using a single up-front tumor next-generation sequencing test if it has higher sensitivity and specificity than the current screening protocol. Objective: To determine whether up-front tumor sequencing (TS) could replace the current multiple sequential test approach for universal tumor screening for LS. Design, Setting, and Participants: Tumor DNA from 419 consecutive CRC cases undergoing standard universal tumor screening and germline genetic testing when indicated as part of the multicenter, population-based Ohio Colorectal Cancer Prevention Initiative from October 2015 through February 2016 (the prospective cohort) and 46 patients with CRC known to have LS due to a germline mutation in a mismatch repair gene from January 2013 through September 2015 (the validation cohort) underwent blinded TS. Main Outcomes and Measures: Sensitivity of TS compared with microsatellite instability (MSI) testing and immunohistochemical (IHC) staining for the detection of LS. Results: In the 465 patients, mean age at diagnosis was 59.9 years (range, 20-96 years), and 241 (51.8%) were female. Tumor sequencing identified all 46 known LS cases from the validation cohort and an additional 12 LS cases from the 419-member prospective cohort. Testing with MSI or IHC, followed by BRAF p.V600E testing missed 5 and 6 cases of LS, respectively. Tumor sequencing alone had better sensitivity (100%; 95% CI, 93.8%-100%) than IHC plus BRAF (89.7%; 95% CI, 78.8%-96.1%; P = .04) and MSI plus BRAF (91.4%; 95% CI, 81.0%-97.1%; P = .07). Tumor sequencing had equal specificity (95.3%; 95% CI, 92.6%-97.2%) to IHC plus BRAF (94.6%; 95% CI, 91.9%-96.6%; P > .99) and MSI plus BRAF (94.8%; 95% CI, 92.2%-96.8%; P = .88). Tumor sequencing identified 284 cases with KRAS, NRAS, or BRAF mutations that could affect therapy for stage IV CRC, avoiding another test. Finally, TS identified 8 patients with germline DPYD mutations that confer toxicity to fluorouracil chemotherapy, which could also be useful for treatment selection. Conclusions and Relevance: Up-front TS in CRC is simpler and has superior sensitivity to current multitest approaches to LS screening, while simultaneously providing critical information for treatment selection.


Assuntos
Neoplasias Colorretais Hereditárias sem Polipose/genética , Neoplasias Colorretais/genética , DNA de Neoplasias/análise , Detecção Precoce de Câncer/métodos , Genes Neoplásicos , Testes Genéticos/métodos , Análise de Sequência de DNA , Neoplasias Colorretais/química , Neoplasias Colorretais Hereditárias sem Polipose/diagnóstico , Ilhas de CpG , Metilação de DNA , Reparo de Erro de Pareamento de DNA/genética , DNA de Neoplasias/genética , Proteínas de Ligação a DNA/genética , Mutação em Linhagem Germinativa , Humanos , Imuno-Histoquímica , Instabilidade de Microssatélites , Endonuclease PMS2 de Reparo de Erro de Pareamento/genética , Proteína 1 Homóloga a MutL/genética , Proteína 2 Homóloga a MutS/genética , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas B-raf/genética , Sensibilidade e Especificidade , Método Simples-Cego
5.
N Engl J Med ; 375(5): 443-53, 2016 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-27433846

RESUMO

BACKGROUND: Inherited mutations in DNA-repair genes such as BRCA2 are associated with increased risks of lethal prostate cancer. Although the prevalence of germline mutations in DNA-repair genes among men with localized prostate cancer who are unselected for family predisposition is insufficient to warrant routine testing, the frequency of such mutations in patients with metastatic prostate cancer has not been established. METHODS: We recruited 692 men with documented metastatic prostate cancer who were unselected for family history of cancer or age at diagnosis. We isolated germline DNA and used multiplex sequencing assays to assess mutations in 20 DNA-repair genes associated with autosomal dominant cancer-predisposition syndromes. RESULTS: A total of 84 germline DNA-repair gene mutations that were presumed to be deleterious were identified in 82 men (11.8%); mutations were found in 16 genes, including BRCA2 (37 men [5.3%]), ATM (11 [1.6%]), CHEK2 (10 [1.9% of 534 men with data]), BRCA1 (6 [0.9%]), RAD51D (3 [0.4%]), and PALB2 (3 [0.4%]). Mutation frequencies did not differ according to whether a family history of prostate cancer was present or according to age at diagnosis. Overall, the frequency of germline mutations in DNA-repair genes among men with metastatic prostate cancer significantly exceeded the prevalence of 4.6% among 499 men with localized prostate cancer (P<0.001), including men with high-risk disease, and the prevalence of 2.7% in the Exome Aggregation Consortium, which includes 53,105 persons without a known cancer diagnosis (P<0.001). CONCLUSIONS: In our multicenter study, the incidence of germline mutations in genes mediating DNA-repair processes among men with metastatic prostate cancer was 11.8%, which was significantly higher than the incidence among men with localized prostate cancer. The frequencies of germline mutations in DNA-repair genes among men with metastatic disease did not differ significantly according to age at diagnosis or family history of prostate cancer. (Funded by Stand Up To Cancer and others.).


Assuntos
Reparo do DNA/genética , Mutação em Linhagem Germinativa , Neoplasias da Próstata/genética , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Análise Mutacional de DNA , Predisposição Genética para Doença , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica/genética
6.
Gastroenterology ; 151(3): 440-447.e1, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27302833

RESUMO

BACKGROUND & AIMS: Some colorectal and endometrial tumors with microsatellite instability not attributable to MLH1 hypermethylation or germline mutations contain 2 or more somatic mutations in genes encoding mismatch repair (MMR) proteins. We sought to define the molecular phenotype of this newly recognized tumor subtype. METHODS: From 2 prospective studies of the efficacy of screening for Lynch syndrome, we identified patients with colorectal and endometrial tumors who had 2 or more somatic (but not germline) mutations in genes encoding MMR proteins (double somatic). We determined the frequencies of tumor mutations in PIK3CA, BRAF, KRAS, NRAS, and PTEN by targeted next-generation sequencing and used logistic-regression models to compare them with those from patients with Lynch syndrome, MLH1-hypermethylated, or microsatellite-stable tumors. We validated our findings using independent data sets from The Cancer Genome Atlas. RESULTS: Among colorectal cancer cases, we found that 14 of 21 (67%) patients with double somatic tumors also had PIK3CA mutations, compared with 4 of 18 (22%) tumors from patients with Lynch syndrome, 2 of 10 (20%) tumors with MLH1 hypermethylation, and 12 of 78 (15%) tumors with microsatellite stability (P < .0001 for patients with double somatic tumors vs other subgroups). Mutations in PIK3CA were detected in all 13 patients with double somatic endometrial cancers (P = .04 compared with other subgroups). We did not detect BRAF mutations in patients with double somatic colorectal tumors or Lynch syndrome. We found highly similar results in a validation cohort from The Cancer Genome Atlas (113 patients with colorectal tumors, 178 endometrial tumors); 100% of double somatic cases had a somatic mutation in PIK3CA (P < .0001 compared with other subgroups). CONCLUSIONS: Most patients with colorectal or endometrial tumors with 2 or more somatic (but not germline) mutations in MMR proteins also have mutations in PIK3CA; mutations in PIK3CA are detected at substantially higher frequencies in these double somatic tumors than in other microsatellite-instability subgroups. PIK3CA mutation status might be used to identify a specific group of colorectal tumors, and to select treatment or determine prognosis.


Assuntos
Neoplasias Colorretais/genética , Reparo de Erro de Pareamento de DNA/genética , Neoplasias do Endométrio/genética , Mutação , Fosfatidilinositol 3-Quinases/genética , Classe I de Fosfatidilinositol 3-Quinases , Neoplasias Colorretais Hereditárias sem Polipose/genética , Análise Mutacional de DNA , Feminino , GTP Fosfo-Hidrolases/genética , Humanos , Masculino , Proteínas de Membrana/genética , Instabilidade de Microssatélites , PTEN Fosfo-Hidrolase/genética , Fenótipo , Estudos Prospectivos , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas p21(ras)/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...