Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 885
Filtrar
1.
Biomed Pharmacother ; 175: 116720, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38733773

RESUMO

Opnurasib (JDQ443) is a newly developed oral KRASG12C inhibitor, with a binding mechanism distinct from the registered KRASG12C inhibitors sotorasib and adagrasib. Phase I and II clinical trials for opnurasib in NSCLC are ongoing. We evaluated the pharmacokinetic roles of the ABCB1 (P-gp/MDR1) and ABCG2 (BCRP) efflux and OATP1 influx transporters, and of the metabolizing enzymes CYP3A and CES1 in plasma and tissue disposition of oral opnurasib, using genetically modified cell lines and mouse models. In vitro, opnurasib was potently transported by human (h)ABCB1 and slightly by mouse (m)Abcg2. In Abcb1a/b- and Abcb1a/b;Abcg2-deficient mice, a significant ∼100-fold increase in brain-to-plasma ratios was observed. Brain penetration was unchanged in Abcg2-/- mice. ABCB1 activity in the blood-brain barrier may therefore potentially limit the efficacy of opnurasib against brain metastases. The Abcb1a/b transporter activity could be almost completely reversed by co-administration of elacridar, a dual ABCB1/ABCG2 inhibitor, increasing the brain penetration without any behavioral or postural signs of acute CNS-related toxicity. No significant pharmacokinetic roles of the OATP1 transporters were observed. Transgenic human CYP3A4 did not substantially affect the plasma exposure of opnurasib, indicating that opnurasib is likely not a sensitive CYP3A4 substrate. Interestingly, Ces1-/- mice showed a 4-fold lower opnurasib plasma exposure compared to wild-type mice, whereas no strong effect was seen on the tissue distribution. Plasma Ces1c therefore likely binds opnurasib, increasing its retention in plasma. The obtained pharmacokinetic insights may be useful for further optimization of the clinical efficacy and safety of opnurasib, and might reveal potential drug-drug interaction risks.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38727613

RESUMO

INTRODUCTION: Post-kala-azar dermal leishmaniasis (PKDL) arises as a dermal complication following a visceral leishmaniasis (VL) infection. Current treatment options for PKDL are unsatisfactory, and there is a knowledge gap regarding the distribution of antileishmanial compounds within human skin. The present study investigated the skin distribution of miltefosine in PKDL patients, with the aim to improve the understanding of the pharmacokinetics at the skin target site in PKDL. METHODS: Fifty-two PKDL patients underwent treatment with liposomal amphotericin B (20 mg/kg) plus miltefosine (allometric dosing) for 21 days. Plasma concentrations of miltefosine were measured on study days 8, 15, 22 and 30, while a punch skin biopsy was taken on day 22. A physiologically based pharmacokinetic (PBPK) model was developed to evaluate the distribution of miltefosine into the skin. RESULTS: Following the allometric weight-based dosing regimen, median miltefosine concentrations on day 22 were 43.73 µg/g (IQR: 21.94-60.65 µg/g) in skin and 33.29 µg/mL (IQR: 25.9-42.58 µg/mL) in plasma. The median individual concentration ratio of skin to plasma was 1.19 (IQR: 0.79-1.9). In 87% (45/52) of patients, skin exposure was above the suggested EC90 PK target of 10.6 mg/L associated with in vitro susceptibility. Simulations indicated that the residence time of miltefosine in the skin would be more than 2-fold longer than in plasma, estimated by a mean residence time of 604 versus 266 hours, respectively. CONCLUSION: This study provides the first accurate measurements of miltefosine penetration into the skin, demonstrating substantial exposure and prolonged retention of miltefosine within the skin. These findings support the use of miltefosine in cutaneous manifestations of leishmaniasis. In combination with parasitological and clinical data, these results are critical for the future optimization of combination therapies with miltefosine in the treatment of PKDL.

3.
J Pharm Biomed Anal ; 245: 116140, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38701533

RESUMO

Ipilimumab is an immune checkpoint inhibitor of the cytotoxic T-lymphocyte-associated protein 4 (CTLA-4). Ipilimumab has become part of the standard of care for different types of cancer. The efficacy of these treatments is limited due to immune-related toxicity and high economic costs. Dose rationalization studies based on pharmacokinetic data may help to address these limitations. For this purpose, more sensitive analytical methods are needed. We report the development and validation of the first enzyme-linked immunosorbent assay (ELISA) for sensitive determination of ipilimumab concentrations in human serum, plasma, cerebrospinal fluid (CSF), and milk. Our assay is based on the specific capture of ipilimumab by immobilized CTLA-4. The lower limit of quantifications of ipilimumab in serum, plasma, and milk are 50 ng/mL and 10 ng/mL in CSF. The ELISA method showed long-term storage stability for at least one year at -80°C and was successfully cross-validated with ultraperformance liquid chromatography coupled with tandem mass spectrometry. The ELISA method is reliable, relatively inexpensive, and can be used in serum, plasma, CSF, and milk from patients treated with ipilimumab, as evidenced by the analysis of real clinical samples.


Assuntos
Ensaio de Imunoadsorção Enzimática , Ipilimumab , Humanos , Ipilimumab/líquido cefalorraquidiano , Ipilimumab/sangue , Ensaio de Imunoadsorção Enzimática/métodos , Animais , Leite/química , Espectrometria de Massas em Tandem/métodos , Antígeno CTLA-4/antagonistas & inibidores , Reprodutibilidade dos Testes , Limite de Detecção
4.
Biomed Pharmacother ; 175: 116644, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38692057

RESUMO

Transmembrane drug transporters can be important determinants of the pharmacokinetics, efficacy, and safety profiles of drugs. To investigate the potential cooperative and/or counteracting interplay of OATP1A/1B/2B1 uptake transporters and ABCB1 and ABCG2 efflux transporters in physiology and pharmacology, we generated a new mouse model (Bab12), deficient for Slco1a/1b, Slco2b1, Abcb1a/1b and Abcg2. Bab12 mice were viable and fertile. We compared wild-type, Slco1a/1b/2b1-/-, Abcb1a/1b;Abcg2-/- and Bab12 strains. Endogenous plasma conjugated bilirubin levels ranked as follows: wild-type = Abcb1a/1b;Abcg2-/- << Slco1a/1b/2b1-/- < Bab12 mice. Plasma levels of rosuvastatin and fexofenadine were elevated in Slco1a/1b/2b1-/- and Abcb1a/1b;Abcg2-/- mice compared to wild-type, and dramatically increased in Bab12 mice. Although systemic exposure of larotrectinib and repotrectinib was substantially increased in the separate multidrug transporter knockout strains, no additive effects were observed in the combination Bab12 mice. Significantly higher plasma exposure of fluvastatin and pravastatin was only found in Slco1a/1b/2b1-deficient mice. However, noticeable transport by Slco1a/1b/2b1 and Abcb1a/1b and Abcg2 across the BBB was observed for fluvastatin and pravastatin, respectively, by comparing Bab12 mice with Abcb1a/1b;Abcg2-/- or Slco1a/1b/2b1-/- mice. Quite varying behavior in plasma exposure of erlotinib and its metabolites was observed among these strains. Bab12 mice revealed that Abcb1a/1b and/or Abcg2 can contribute to conjugated bilirubin elimination when Slco1a/1b/2b1 are absent. Our results suggest that the interplay of Slco1a/1b/2b1, Abcb1a/1b, and Abcg2 could markedly affect the pharmacokinetics of some, but not all drugs and metabolites. The Bab12 mouse model will represent a useful tool for optimizing drug development and clinical application, including efficacy and safety.

5.
Clin Cancer Res ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38739109

RESUMO

PURPOSE: Development of resistance limits the clinical benefit of BRAF and MEK inhibitors (BRAFi/MEKi) in BRAFV600 mutated melanoma. It has been shown that short-term treatment (14 days) with vorinostat was able to initiate apoptosis of the resistant tumor cells. We aimed to assess the anti-tumor activity of sequential treatment with vorinostat following BRAFi/MEKi in patients with BRAFV600 melanoma who progressed after initial response to BRAFi/MEKi. PATIENTS AND METHODS: Patients with BRAFi/MEKi resistant BRAFV600 melanoma were treated with vorinostat 360 mg QD for 14 days followed by BRAFi/MEKi. The primary endpoint was an objective response rate of progressive lesions of at least 30% according to RECIST 1.1. Secondary endpoints included progression-free survival (PFS), overall survival (OS), safety, pharmacokinetics of vorinostat and translational molecular analyses using ctDNA and tumor biopsies. RESULTS: Twenty-six patients with progressive BRAFi/MEKi resistant BRAFV600 mutated melanoma received treatment with vorinostat. Twenty-two patients were evaluable for response. The ORR was 9% (one complete response for 31.2 months and one partial response for 14.9 months. Median PFS and OS were 1.4 and 5.4 months, respectively. Common adverse events were fatigue (23%) and nausea (19%). ctDNA analysis showed emerging secondary mutations in NRAS and MEK in eight patients at time of BRAFi/MEKi resistance. Elimination of these mutations by vorinostat treatment was observed in three patients. CONCLUSIONS: Intermittent treatment with vorinostat in patients with resistant BRAFV600mutated melanoma is well tolerated. Although the primary endpoint of this study was not met, durable anti-tumor responses were observed in a minority of patients (9%).

6.
J Pharm Biomed Anal ; 245: 116154, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38657367

RESUMO

Malaria remains a major health concern, aggravated by emerging resistance of the parasite to existing treatments. The World Health Organization recently endorsed the use of artesunate-pyronaridine to treat uncomplicated malaria. However, there is a lack of clinical pharmacokinetic (PK) data of pyronaridine, particularly in special populations such as children and pregnant women. Existing methods for the quantification of pyronaridine in biological matrices to support PK studies exhibit several drawbacks. These include limited sensitivity, a large sample volume required, and extensive analysis time. To overcome these limitations, an ultra-performance reversed-phase liquid chromatography tandem-mass spectrometry method to determine pyronaridine was developed and validated according to international guidelines. The method enabled fast and accurate quantification of pyronaridine in whole blood across a clinically relevant concentration range of 0.500-500 ng/mL (r2 ≥ 0.9963), with a required sample volume of 50 µL. Pyronaridine was extracted from whole blood using liquid-liquid extraction, effectively eliminating the matrix effect and preventing ion enhancement or suppression. The method achieved a satisfactory reproducible sample preparation recovery of 77%, accuracy (as bias) and precision were within ±8.2% and ≤5.3%, respectively. Stability experiments demonstrated that pyronaridine was stable for up to 315 days when stored at -70°C. Adjustments to the chromatographic system substantially reduced carry-over and improved sensitivity compared to prior methods. The method was successfully applied to quantify pyronaridine in whole blood samples from a selection of pregnant malaria patients participating in the PYRAPREG clinical trial (PACTR202011812241529) in the Democratic Republic of the Congo, demonstrating its suitability to support future PK studies. Furthermore, the enhanced sensitivity allows for the determination of pyronaridine up to 42 days post-treatment initiation, enabling assessment of the terminal elimination half-life.


Assuntos
Antimaláricos , Naftiridinas , Espectrometria de Massas em Tandem , Humanos , Antimaláricos/sangue , Antimaláricos/farmacocinética , Antimaláricos/análise , Espectrometria de Massas em Tandem/métodos , Naftiridinas/sangue , Naftiridinas/farmacocinética , Naftiridinas/análise , Cromatografia Líquida de Alta Pressão/métodos , Reprodutibilidade dos Testes , Feminino , Extração Líquido-Líquido/métodos , Gravidez , Malária/tratamento farmacológico , Malária/sangue , Cromatografia de Fase Reversa/métodos
7.
Oncol Res Treat ; 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38583422

RESUMO

INTRODUCTION: Naked DNA vaccination could be a powerful and safe strategy to mount antigen-specific cellular immunity. We designed a phase I clinical trial to investigate the toxicity of naked DNA vaccines encoding CD8+ T-cell epitope from tumor-associated antigen MART-1 in patients with advanced melanoma. METHODS: This dose escalating phase Ia clinical trial investigates the toxicity and immunological response upon naked DNA vaccines encoding a CD8+ T-cell epitope from the tumor-associated antigen MART-1, genetically linked to the gene encoding domain 1 of subunit-tetanus toxin fragment C in patients with advanced melanoma (inoperable stage IIIC-IV, AJCC 7th edition). The vaccine was administrated via intradermal application using a permanent make-up or tattoo device. Safety was monitored according to CTCAE v.3.0 and skin biopsies and blood samples were obtained for immunologic monitoring. RESULTS: Nine pretreated, HLA-A*0201-positive patients with advanced melanoma expressing MART-1 and MHC class I, with a good performance status, and adequate organ function, were included. With a median follow-up of 5.9 months, DNA vaccination was safe, without treatment-related deaths. Common treatment-emergent adverse events of any grade were dermatologic reactions at the vaccination site (100%) and pain (56%). One patient experienced grade 4 toxicity, most likely related to tumor progression. One patient (11%) achieved stable disease, lasting 353 days. Immune analysis showed no increase in vaccine-induced T cell response in peripheral blood of five patients, but did show a MART-1 specific CD8+ T cell response at the tattoo administration site. The maximum dose administered was 2 mg due to lack of clinical activity. CONCLUSION: We showed that the developed DNA vaccine, applied using a novel intradermal application strategy, can be administered safely. Further research with improved vaccine formats is required to show possible clinical benefit of DNA vaccination.

8.
Artigo em Inglês | MEDLINE | ID: mdl-38689161

RESUMO

Cytochrome P450 (CYP) enzymes play a central role in the elimination of approximately 80% of all clinically used drugs. Differences in CYP enzyme activity between individuals can contribute to interindividual variability in exposure and, therefore, treatment outcome. In vivo CYP enzyme activity could be determined with phenotyping. Currently, (sub)therapeutic doses are used for in vivo phenotyping, which can lead to side effects. The use of microdoses (100 µg) for in vivo phenotyping for CYP enzymes could overcome the limitations associated with the use of (sub)therapeutic doses of substrates. The aim of this review is to provide a critical overview of the application of microdosing for in vivo phenotyping of CYP enzymes. A literature search was performed to find drug-drug interaction studies of CYP enzyme substrates that used microdoses of the respective substrates. A substrate was deemed sensitive to changes in CYP enzyme activity when the pharmacokinetics of the substrate significantly changed during inhibition and induction of the enzyme. On the basis of the currently available evidence, the use of microdosing for in vivo phenotyping for subtypes CYP1A2, CYP2C9, CYP2D6, and CYP2E1 is not recommended. Microdosing can be used for the in vivo phenotyping of CYP2C19 and CYP3A. The recommended microdose phenotyping test for CYP2C19 is measuring the omeprazole area-under-the-concentration-time curve over 24 h (AUC0-24) after administration of a single 100 µg dose. CYP3A activity could be best determined with a 0.1-75 µg dose of midazolam, and subsequently measuring AUC extrapolated to infinity (AUC∞) or clearance. Moreover, there are two metrics available for midazolam using a limited sampling strategy: AUC over 10 h (AUC0-10) and AUC from 2 to 4 h (AUC2-4).

9.
Toxicol Appl Pharmacol ; 485: 116911, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38527694

RESUMO

The highly selective Spleen Tyrosine Kinase (SYK) inhibitors entospletinib and lanraplenib disrupt kinase activity and inhibit immune cell functions. They are developed for treatment of B-cell malignancies and autoimmunity diseases. The impact of P-gp/ABCB1 and BCRP/ABCG2 efflux transporters, OATP1a/1b uptake transporters and CYP3A drug-metabolizing enzymes on the oral pharmacokinetics of these drugs was assessed using mouse models. Entospletinib and lanraplenib were orally administered simultaneously at moderate dosages (10 mg/kg each) to female mice to assess the possibility of examining two structurally and mechanistically similar drugs at the same time, while reducing the number of experimental animals and sample-processing workload. The plasma pharmacokinetics of both drugs were not substantially restricted by Abcb1 or Abcg2. The brain-to-plasma ratios of entospletinib in Abcb1a/b-/-, Abcg2-/- and Abcb1a/b;Abcg2-/- mice were 1.7-, 1.8- and 2.9-fold higher, respectively, compared to those in wild-type mice. For lanraplenib these brain-to-plasma ratios were 3.0-, 1.3- and 10.4-fold higher, respectively. This transporter-mediated restriction of brain penetration for both drugs could be almost fully inhibited by coadministration of the dual ABCB1/ABCG2 inhibitor elacridar, without signs of acute toxicity. Oatp1a/b and human CYP3A4 did not seem to affect the pharmacokinetics of entospletinib and lanraplenib, but mouse Cyp3a may limit lanraplenib plasma exposure. Unexpectedly, entospletinib and lanraplenib increased each other's plasma exposure by 2.6- to 2.9-fold, indicating a significant drug-drug interaction. This interaction was, however, unlikely to be mediated through any of the studied transporters or CYP3A. The obtained insights may perhaps help to further improve the safety and efficacy of entospletinib and lanraplenib.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Encéfalo , Indazóis , Morfolinas , Inibidores de Proteínas Quinases , Pirazinas , Animais , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Feminino , Camundongos , Inibidores de Proteínas Quinases/farmacocinética , Inibidores de Proteínas Quinases/farmacologia , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Quinase Syk/antagonistas & inibidores , Quinase Syk/metabolismo , Camundongos Knockout , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores , Camundongos Endogâmicos C57BL , Pirimidinas/farmacocinética , Pirimidinas/farmacologia , Administração Oral
10.
J Pharm Biomed Anal ; 243: 116108, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38522382

RESUMO

BACKGROUND AND AIM: To support pharmacokinetic studies, a multiplex UPLC-MS/MS assay was developed and validated to quantify PD-L1 checkpoint inhibitors atezolizumab, avelumab, and durvalumab in serum. METHODS: A bottom-up sample pre-treatment procedure was developed to determine atezolizumab, avelumab, and durvalumab in serum. This procedure consisted of (1) precipitation of the monoclonal antibody with ammonium sulfate, (2) reduction with dithiothreitol, (3) denaturation with methanol, and (4) tryptic digestion of the protein. The unique signature peptides resulting after sample pre-treatment of the antibodies were measured using UPLC-MS/MS with a total run time of 11 minutes. The clinical application was evaluated by analyzing 114 atezolizumab patient samples. RESULTS: The developed method was found to be accurate and precise for all three analytes over a concentration range of 3.00-150 µg/mL. No endogenous interference was present in serum samples. Cross-interference experiments showed no cross-analyte interference and acceptable cross-internal standard interference. In addition, no substantial carry-over was observed. The stable isotopically labeled signature peptides were most effective in compensating for matrix effects. Recovery based on back-calculated concentrations of calibration standards and quality control samples was found to be high. The analytes were stable for at least three freeze-thaw cycles, for 42 hours at processing conditions, for at least two days at 2-8°C in the final extract, for five days before re-injection analysis at 4°C, and long-term for at least 11 months at -70°C. The assay was tested for its applicability in clinical practice. For this purpose, 114 atezolizumab patient samples were measured. CONCLUSION: A multiplex UPLC-MS/MS assay was developed and validated to quantify atezolizumab, avelumab, and durvalumab in human serum. The applicability of this method was demonstrated by the analysis of clinical atezolizumab samples. The method is suitable to support clinical pharmacokinetic studies involving atezolizumab, avelumab, or durvalumab.


Assuntos
Anticorpos Monoclonais Humanizados , Antígeno B7-H1 , Espectrometria de Massas em Tandem , Humanos , Antígeno B7-H1/metabolismo , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida , Inibidores de Checkpoint Imunológico , Espectrometria de Massa com Cromatografia Líquida , Anticorpos Monoclonais , Peptídeos
11.
Artigo em Inglês | MEDLINE | ID: mdl-38456955

RESUMO

PURPOSE: An oral docetaxel formulation boosted by the Cytochrome P450 (CYP) 3 A inhibitor ritonavir, ModraDoc006/r, is currently under clinical investigation. Based on clinical data, the incidence of grade 1-2 diarrhea is increased with this oral docetaxel formulation compared to the conventional intravenous administration. Loperamide, a frequently used diarrhea inhibitor, could be added to the regimen as symptomatic treatment. However, loperamide is also a substrate of the CYP3A enzyme, which could result in competition between ritonavir and loperamide for this protein. Therefore, we were interested in the impact of coadministered loperamide on the pharmacokinetics of ritonavir-boosted oral docetaxel. METHODS: We administered loperamide simultaneously or with an 8-hour delay to humanized CYP3A4 mice (with expression in liver and intestine) receiving oral ritonavir and docetaxel. Concentrations of docetaxel, ritonavir, loperamide and two of its active metabolites were measured. RESULTS: The plasma exposure (AUC and Cmax) of docetaxel was not altered during loperamide treatment, nor were the ritonavir plasma pharmacokinetics. However, the hepatic and intestinal dispositions of ritonavir were somewhat changed in the simultaneous, but not 8-hour loperamide treatment groups, possibly due to loperamide-induced delayed drug absorption. The pharmacokinetics of loperamide itself did not seem to be influenced by ritonavir. CONCLUSION: These results suggest that delayed loperamide administration can be added to ritonavir-boosted oral docetaxel treatment, without affecting the overall systemic exposure of docetaxel.

12.
Mol Pharm ; 21(4): 1952-1964, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38423793

RESUMO

Intravenously administered chemotherapeutic cabazitaxel is used for palliative treatment of prostate cancer. An oral formulation would be more patient-friendly and reduce the need for hospitalization. We therefore study determinants of the oral pharmacokinetics of cabazitaxel in a ritonavir-boosted setting, which reduces the CYP3A-mediated first-pass metabolism of cabazitaxel. We here assessed the role of organic anion-transporting polypeptides (OATPs) in the disposition of orally boosted cabazitaxel and its active metabolites, using the Oatp1a/b-knockout and the OATP1B1/1B3-transgenic mice. These transporters may substantially affect plasma clearance and hepatic and intestinal drug disposition. The pharmacokinetics of cabazitaxel and DM2 were not significantly affected by Oatp1a/b and OATP1B1/1B3 activity. In contrast, the plasma AUC0-120 min of DM1 in Oatp1a/b-/- was 1.9-fold (p < 0.05) higher than that in wild-type mice, and that of docetaxel was 2.4-fold (p < 0.05) higher. We further observed impaired hepatic uptake and intestinal disposition for DM1 and docetaxel in the Oatp-ablated strains. None of these parameters showed rescue by the OATP1B1 or -1B3 transporters in the humanized mouse strains, suggesting a minimal role of OATP1B1/1B3. Ritonavir itself was also a potent substrate for mOatp1a/b, showing a 2.9-fold (p < 0.0001) increased plasma AUC0-120 min and 3.5-fold (p < 0.0001) decreased liver-to-plasma ratio in Oatp1a/b-/- compared to those in wild-type mice. Furthermore, we observed the tight binding of cabazitaxel and its active metabolites, including docetaxel, to plasma carboxylesterase (Ces1c) in mice, which may complicate the interpretation of pharmacokinetic and pharmacodynamic mouse studies. Collectively, these results will help to further optimize (pre)clinical research into the safety and efficacy of orally applied cabazitaxel.


Assuntos
Transportadores de Ânions Orgânicos Sódio-Independentes , Transportadores de Ânions Orgânicos , Taxoides , Animais , Humanos , Masculino , Camundongos , Carboxilesterase/metabolismo , Docetaxel , Fígado/metabolismo , Transportador 1 de Ânion Orgânico Específico do Fígado/metabolismo , Camundongos Transgênicos , Transportadores de Ânions Orgânicos/metabolismo , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Ritonavir , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto/metabolismo
13.
Cancer Drug Resist ; 7: 3, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38318527

RESUMO

Aim: Docetaxel is a microtubule-stabilizing drug used for the treatment of several cancers, including prostate cancer. Resistance to docetaxel can either occur through intrinsic resistance or develop under therapeutic pressure, i.e., acquired resistance. A possible explanation for the occurrence of acquired resistance to docetaxel is increased drug efflux via P-glycoprotein (P-gp) drug transporters. Methods: We have generated docetaxel-resistant cell lines DU-145DOC10 and 22Rv1DOC8 by exposing parental cell lines DU-145DOC and 22Rv1 to increasing levels of docetaxel. Gene expression levels between DU-145DOC10 and 22Rv1DOC8 were compared with those of their respective originator cell lines. Both parental and resistant cell lines were treated with the taxane drugs docetaxel and cabazitaxel in combination with the P-gp/CYP3A4 inhibitor ritonavir and the P-gp inhibitor elacridar. Results: In the docetaxel-resistant cell lines DU-145DOC10 and 22Rv1DOC8, the ABCB1 (P-gp) gene was highly up-regulated. Expression of the P-gp protein was also significantly increased in the docetaxel-resistant cell lines in a Western blotting assay. The addition of ritonavir to docetaxel resulted in a return of the sensitivity to docetaxel in the DU-145DOC10 and 22Rv1DOC8 to a level similar to the sensitivity in the originator cells. We found that these docetaxel-resistant cell lines could also be re-sensitized to cabazitaxel in a similar manner. In a Caco-2 P-gp transporter assay, functional inhibition of P-gp-mediated transport of docetaxel with ritonavir was demonstrated. Conclusion: Our results demonstrate that ritonavir restores sensitivity to both docetaxel and cabazitaxel in docetaxel-resistant cell lines, most likely by inhibiting P-gp-mediated drug efflux.

14.
Ther Drug Monit ; 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38321598

RESUMO

BACKGROUND: Volumetric Absorptive Microsampling (VAMS) is a useful tool for therapeutic drug monitoring (TDM) of oral targeted anticancer agents. VAMS aims to improve safety and efficacy by enabling at-home blood sample collection by patients. This study aimed to develop and validate an ultra-high performance liquid chromatography-tandem mass spectrometry method for the quantitative determination of abiraterone, alectinib, cabozantinib, imatinib, olaparib, sunitinib, and the metabolites, Δ(4)-abiraterone (D4A), alectinib-M4, imatinib-M1, and N-desethyl sunitinib, in dried whole blood samples using VAMS to support TDM. METHODS: After the collection of 10 µL of whole blood sample using the VAMS device, the analytes were extracted from the tip using methanol with shaking, evaporated, and reconstituted in acetonitrile:0.1 mol/L ammonium hydroxide in water (1:1, vol/vol). The extracts were then analyzed using ultra-high performance liquid chromatography-tandem mass spectrometry. Validation experiments based on the ICH M10 guideline were carried out, and stability was evaluated under shipping and storage conditions. VAMS specimens were collected in the outpatient clinic to demonstrate the applicability of the assay. RESULTS: The validated range of the method was considered accurate and precise for all analytes. Accordingly, the validation experiments met the relevant requirements, except for cross-analyte interference. Based on the stability data, shipment can be performed at room temperature within 14 days after sample collection and the VAMS specimen can be stored up to 9 months at -20 and -70°C. Samples from 59 patients were collected at the hospital. CONCLUSIONS: The developed method could be used to successfully quantify the concentrations of abiraterone, D4A, alectinib, alectinib-M4, cabozantinib, imatinib, imatinib-M1, olaparib, sunitinib, and N-desethyl sunitinib within the validated range using VAMS. Therefore, the method can be used to estimate the dried whole blood-to-plasma ratios for TDM in the clinic.

15.
J Immunother Cancer ; 12(1)2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38296595

RESUMO

BACKGROUND: The role of antibiotics in malignancies treated with immune checkpoint inhibitors (ICI) remains unclear. Several studies suggested a detrimental impact of antibiotic use on the response to ICI, but were susceptible to confounding by indication. Our objective was therefore to assess whether the relationship between antibiotic use and ICI response is causative or merely associative. METHODS: A large, single-center observational cohort study was performed with individuals treated for either non-small cell lung carcinoma (NSCLC) or metastatic melanoma. An effect modification approach was used, aiming to estimate the association between antibiotic use and overall survival (OS) and compare these estimates between individuals receiving first-line ICI treatment versus those receiving first-line tyrosine kinase inhibitors (TKIs). Exposure of interest was antibiotic use within 30 days before the start of anticancer treatment. HRs for OS were estimated for antibiotics versus no antibiotics in each cohort using multivariable propensity adjusted analysis. The "true antibiotic effect" within the ICI versus TKI cohort was modeled using an interaction term. RESULTS: A total of 4534 patients were included, of which 1908 in the ICI cohort and 817 in the TKI cohort. Approximately 10% of patients in each cohort used antibiotics within 30 days before the start of anticancer treatment. Our results demonstrate a lack of synergistic interaction between current antibiotic use and ICI therapy in relation to OS: although antibiotic use was significantly associated with OS decline in the ICI cohort (HR=1.26 (95% CI 1.04 to 1.51)), a similar magnitude in OS decline was found within the TKI cohort (HR=1.24 (95% CI 0.95 to 1.62)). This was reflected by the synergy index (HR=0.96 (95% CI 0.70 to 1.31)), which implied no synergistic interaction between current antibiotic use and ICI. CONCLUSION: This study strongly suggests that there is no causal detrimental association between antibiotic use and ICI therapy outcome when looking at OS in individuals with malignant melanoma or NSCLC. The frequently observed inverse association between antibiotics and ICI response in previous studies is most likely driven by confounding by indication, which was confirmed by the findings in our reference TKI cohort.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Melanoma , Humanos , Melanoma/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Inibidores de Checkpoint Imunológico/efeitos adversos , Antibacterianos/efeitos adversos , Neoplasias Pulmonares/tratamento farmacológico
16.
Clin Transl Sci ; 17(1): e13668, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38037826

RESUMO

First-in-human dose predictions are primarily based on no-observed-adverse-effect levels in animal studies. Predictions from these animal models are only as effective as their ability to predict human results. To narrow the gap between human and animals, researchers have, among other things, focused on the replacement of animal cytochrome P450 (CYP) enzymes with their human counterparts (called humanization), especially in mice. Whereas research in humanized mice is extensive, the emphasis has been particularly on qualitative rather than quantitative predictions. Because the CYP3A4 enzyme is most involved in the metabolism of clinically used drugs, most benefit was expected from CYP3A4 models. There are several applications of these mouse models regarding in vivo CYP3A4 functionality, one of which might be their capacity to help improve first-in-human (FIH) dose predictions for CYP3A4-metabolized drugs. To evaluate whether human-CYP3A4-transgenic mouse models are better predictors of human exposure compared to the wild-type mouse model, we performed a meta-analysis comparing both mouse models in their ability to accurately predict human exposure of small-molecule drugs metabolized by CYP3A4. Results showed that, in general, the human-CYP3A4-transgenic mouse model had similar accuracy in the prediction of human exposure compared to the wild-type mouse model, suggesting that there is limited added value in humanization of the mouse Cyp3a enzymes if the primary aim is to acquire more accurate FIH dose predictions. Despite the results of this meta-analysis, corrections for interspecies differences through extension of human-CYP3A4-transgenic mouse models with pharmacokinetic modeling approaches seems a promising contribution to more accurate quantitative predictions of human pharmacokinetics.


Assuntos
Citocromo P-450 CYP3A , Sistema Enzimático do Citocromo P-450 , Humanos , Camundongos , Animais , Citocromo P-450 CYP3A/metabolismo , Camundongos Transgênicos , Sistema Enzimático do Citocromo P-450/metabolismo , Modelos Animais , Interações Medicamentosas
17.
Clin Pharmacol Ther ; 115(2): 269-277, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37957132

RESUMO

DPYD-guided dosing has improved the safety of fluoropyrimidine-based chemotherapy in recent years. However, severe toxicity remains in ~ 23% of patients not carrying DPYD variant alleles treated with capecitabine. Therefore, we developed a predictive model based on patient-related and treatment-related factors aimed at estimating the risk of developing severe capecitabine-related toxicity. The nomogram was developed using data from two large clinical trials (NCT00838370 and NCT02324452). Patients with cancer carrying a DPYD variant allele (DPYD*2A, c.1236G>A, c.2846A>T, and c.1679T>G) were excluded. Univariable and multivariable logistic regression using predetermined predictors based on previous findings, including age, sex, body surface area, type of treatment regimen, and creatinine levels were used to develop the nomogram. The developed model was internally validated using bootstrap resampling and cross-validation. This model was not externally or clinically validated. A total of 2,147 DPYD wild-type patients with cancer treated with capecitabine-based chemotherapy regimens were included of which complete data of 1,745 patients were available and used for the development of the nomogram. Univariable and multivariable logistic regression showed that age, sex, and type of treatment regimen were strong predictors of severe capecitabine-related toxicity in DPYD wild-type patients. Internal validation demonstrated a concordance index of 0.68 which indicates a good discriminative ability for prediction of severe capecitabine-related toxicity. The developed nomogram includes readily available parameters and may be a helpful tool for clinicians to assess the risk of developing severe capecitabine-related toxicity in patients without known risk DPYD variant alleles treated with capecitabine-based anticancer regimens.


Assuntos
Fluoruracila , Neoplasias , Humanos , Capecitabina/efeitos adversos , Fluoruracila/efeitos adversos , Antimetabólitos Antineoplásicos/efeitos adversos , Nomogramas , Di-Hidrouracila Desidrogenase (NADP)/genética , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/induzido quimicamente , Genótipo
18.
Ther Drug Monit ; 46(1): 73-79, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-37348074

RESUMO

BACKGROUND: the study aims to evaluate whether high plasma trough levels of the kinase inhibitors (K.I.s) crizotinib, alectinib, osimertinib, dabrafenib, and trametinib were associated with a higher risk of toxicity in non-small-cell lung cancer patients. METHODS: In this retrospective cohort study, patients with non-small-cell lung cancer treated with the selected K.I.s were included if at least one plasma trough level at steady state (C min,ss ) was available. Data were extracted from electronic medical records and laboratory databases. The high group for each K.I. was defined as 10% of patients with the highest first C min,ss . The remaining patients were placed in the non-high group. The frequency of dose-limiting toxicities (DLTs), defined as adverse events leading to dose reduction, dose interruption, or permanent discontinuation, was compared between the 2 groups. RESULTS: A total of 542 patients were included in the different K.I. groups. A high C min,ss of crizotinib (n = 96), alectinib (n = 105), osimertinib (n = 227), dabrafenib (n = 52), and trametinib (n = 62) correlated with a C min,ss ≥490, ≥870, ≥405, ≥150, and ≥25 ng/mL, respectively. DLTs were more common in the alectinib high group than in the alectinib non-high group (64% vs. 29%, P = 0.036). Liver toxicity was observed in 4 (36%) patients in the high group and 5 (5%) patients in the non-high group ( P = 0.007). For other K.I.s, no significant differences were observed in the frequency of DLTs between the high and non-high groups. CONCLUSIONS: For alectinib, high C min,ss was correlated with a higher risk of DLT. No differences in the frequency of DLTs were observed between the high and non-high groups for crizotinib, osimertinib, dabrafenib, and trametinib.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Crizotinibe/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Estudos Retrospectivos , Relevância Clínica , Quinase do Linfoma Anaplásico/uso terapêutico , Inibidores de Proteínas Quinases/efeitos adversos
19.
J Clin Pharmacol ; 64(2): 155-163, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37789682

RESUMO

Patients with prostate cancer (PCa) have a lower docetaxel exposure for both intravenous (1.8-fold) and oral administration (2.4-fold) than patients with other solid cancers, which could influence efficacy and toxicity. An altered metabolism by cytochrome P450 3A (CYP3A) due to castration status might explain the observed difference in docetaxel pharmacokinetics. In this in vivo phenotyping, pharmacokinetic study, CYP3A activity defined by midazolam clearance (CL) was compared between patients with PCa and male patients with other solid tumors. All patients with solid tumors who did not use CYP3A-modulating drugs were eligible for participation. Patients received 2 mg midazolam orally and 1 mg midazolam intravenously on 2 consecutive days. Plasma concentrations were measured with a validated liquid chromatography-tandem mass spectrometry method. Genotyping was performed for CYP3A4 and CYP3A5. Nine patients were included in each group. Oral midazolam CL was 1.26-fold higher in patients with PCa compared to patients with other solid tumors (geometric mean [coefficient of variation], 94.1 [33.5%] L/h vs 74.4 [39.1%] L/h, respectively; P = .08). Intravenous midazolam CL did not significantly differ between the 2 groups (P = .93). Moreover, the metabolic ratio of midazolam to 1'-hydroxy midazolam did not differ between the 2 groups for both oral administration (P = .67) and intravenous administration (P = .26). CYP3A4 and CYP3A5 genotypes did not influence midazolam pharmacokinetics. The observed difference in docetaxel pharmacokinetics between both patient groups therefore appears to be explained neither by a difference in midazolam CL nor by a difference in metabolic conversion rate of midazolam.


Assuntos
Citocromo P-450 CYP3A , Neoplasias da Próstata , Humanos , Masculino , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Midazolam/farmacocinética , Docetaxel , Fenótipo , Neoplasias da Próstata/tratamento farmacológico , Administração Oral
20.
Cancer Chemother Pharmacol ; 93(2): 129-136, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37906253

RESUMO

PURPOSE: Data on the effects of obesity on drug exposure of oral targeted oncolytics is scarce. Therefore, the aim of this study was to investigate the influence of body weight and body mass index (BMI) on trough levels of oral oncolytics with an exposure-response relationship. The oral oncolytics of interest were abiraterone, alectinib, cabozantinib, crizotinib, imatinib, pazopanib, sunitinib and trametinib. METHODS: This retrospective cohort study included patients treated with the selected oral oncolytics at the standard dose, with a measured trough level at steady state and with available body weight. The Spearman's correlation test was used to determine the correlation between body weight and trough levels. The Fisher's exact text was used to compare the frequency of inadequate trough levels between BMI categories. RESULTS: 1265 patients were included across the different oral oncolytics. A negative correlation coefficient was observed between weight and trough levels for crizotinib (n = 75), imatinib (n = 201) and trametinib (n = 310), respectively, ρ = - 0.41, ρ = - 0.24 and ρ = - 0.23, all with a p-value < 0.001. For crizotinib, a higher percentage of patients with a body weight > 100 kg had inadequate trough levels. No statistically significant differences were observed in the frequency of inadequate trough levels between BMI categories. CONCLUSION: Higher body weight was only correlated with lower plasma trough levels for crizotinib, imatinib, and trametinib. Therefore, patients with a high body weight may require dose escalation to obtain adequate target levels when treated with these oral oncolytics.


Assuntos
Obesidade , Humanos , Mesilato de Imatinib/uso terapêutico , Crizotinibe , Estudos Retrospectivos , Sunitinibe
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...