Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Mar Environ Res ; 192: 106215, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37890231

RESUMO

Coral reefs in turbid waters have been hypothesized to be a refuge from climate change. These naturally occurring communities were brought into the spotlight because some of their species exhibited record levels of resistance to marine heatwaves (MHWs) by disturbance-tolerant corals. However, long-term monitoring data on the drivers of coral bleaching in these extreme reef habitats are scarce. Here, we describe the population structure and bleaching rates of a widespread and resilient coral (Siderastrea stellata). We examine the links between environmental factors, namely, rainfall, wind speed, turbidity, solar irradiance, sea surface temperature, MHWs, and coral bleaching status under the worst recorded drought cycle in the Tropical South Atlantic (2013-2015). We examined 2880 colonies, most of which (∼93%) fit in the size group of 2-10 cm, with a small number (∼1%) of larger and older colonies (>20 cm). The results indicated the absence of MHWs and normal sea surface temperature variations (between 26.6 °C and 29.3 °C), however, we detected an extreme rainfall deficit (30-40% less annual volume precipitation). In general, a high proportion (44-84%) of bleached colonies was found throughout the months when turbidity decreased. Siderastrea is the only reef-building coral that comprises this seascape with encrusting and low-relief colonies. During drought periods, cloudiness is reduced, turbidity and wind speed are reduced, and solar irradiance increase, driving coral bleaching in turbid reefs. However, episodic rainfall and higher wind speeds increase turbidity and decrease coral bleaching. Our hypothesis is that turbidity decreases during drought periods which increases bleaching risk to corals even without thermal stress. Our results suggest that turbidity may have related to wind and rainfall to provoke the coral bleaching phenomenon.


Assuntos
Antozoários , Branqueamento de Corais , Animais , Vento , Recifes de Corais , Ecossistema
2.
Sci Total Environ ; 900: 165637, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37490944

RESUMO

Anthropogenic marine debris and invasive species are pervasive in the ocean. However, research on the mechanisms and dynamics controlling their distribution in marine systems (e.g.; by floating debris acting as vectors for invasive species) is limited. Applying a numerical modeling approach, we demonstrate that rafting invasive corals (Tubastraea spp.) can be transported over long distances and reach important tropical receptor regions. In <180 days, buoyant debris can cover distances between 264 and 7170 km moving from the Brazilian semiarid coast to the Amazon coast and reaching eight regions in the Wider Caribbean (mainly the Eastern Caribbean and Greater Antilles). Analyzing 48 simulated scenarios (4 years × 3 depths × 4 months), we demonstrate that in ~86 % of the scenarios the particles are stranded in the Caribbean and in ~71 % they end up in the Amazon coast. Our results showed litter floating trajectories at 0-10 m water depth, transported every year to the Caribbean province. However, in August this transport is frequently blocked by the retroflection of the North Brazil Current adjacent to the Amazon River estuarine plume. Our results indicate routes for fast and long-distance transport of litter-rafting invasive species. We hypothesized a high risk of bioinvasion on important marine ecosystems (e.g., coral reefs) likely becoming increasingly threatened by these invasive species and debris. This highlights the imperative need for an ocean governance shift in prevention, control, and eradication, not only focused on local actions to prevent the spread of invasive species but also a broad international action to decrease and mitigate marine debris pollution globally.


Assuntos
Antozoários , Animais , Ecossistema , Recifes de Corais , Espécies Introduzidas , Região do Caribe , Plásticos
3.
Nat Commun ; 14(1): 985, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36813767

RESUMO

Anthropogenic pressures are restructuring coral reefs globally. Sound predictions of the expected changes in key reef functions require adequate knowledge of their drivers. Here we investigate the determinants of a poorly-studied yet relevant biogeochemical function sustained by marine bony fishes: the excretion of intestinal carbonates. Compiling carbonate excretion rates and mineralogical composition from 382 individual coral reef fishes (85 species and 35 families), we identify the environmental factors and fish traits that predict them. We find that body mass and relative intestinal length (RIL) are the strongest predictors of carbonate excretion. Larger fishes and those with longer intestines excrete disproportionately less carbonate per unit mass than smaller fishes and those with shorter intestines. The mineralogical composition of excreted carbonates is highly conserved within families, but also controlled by RIL and temperature. These results fundamentally advance our understanding of the role of fishes in inorganic carbon cycling and how this contribution will change as community composition shifts under increasing anthropogenic pressures.


Assuntos
Antozoários , Recifes de Corais , Animais , Temperatura , Peixes , Carbonatos , Efeitos Antropogênicos , Ecossistema
4.
Sci Rep ; 12(1): 17359, 2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-36253396

RESUMO

Large gaps in reef distribution may hinder the dispersal of marine organisms, interrupting processes vital to the maintenance of biodiversity. Here we show the presence and location of extensive reef habitats on the continental shelf between the Amazon Reef System (ARS) and the Eastern Brazilian Reef System (ERS), two reef complexes off eastern South America. Formations located 20-50 m deep include both biogenic and geogenic structures. The presence of diverse reef assemblages suggests the widespread occurrence of rocky substrates below 50 m. These habitats represent an expansion of both the ARS and ERS and the closure of the only remaining large-scale gap (~ 1000 km) among West Atlantic reef environments. This indicates that the SW Atlantic harbors a single, yet heterogeneous, reef system that stretches for about 4000 km, and thus, represents one of the largest semi-continuous tropical marine ecosystems in the world.


Assuntos
Biodiversidade , Ecossistema , Animais , Organismos Aquáticos , Brasil , Recifes de Corais , Peixes
5.
Ecol Evol ; 12(4): e8787, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35475185

RESUMO

Quantifying the morphology of organisms remains fundamental in ecology given the form-function relationship. Morphology is quantifiable in traits, landmarks, and outlines, and the choice of approach may influence ecological conclusions to an unknown extent. Here, we apply these three approaches to 111 individual coral reef fish of 40 species common in Micronesia. We investigate the major dimensions of morphological variability among individuals, families, and predefined feeding functional groups. We find that although the approaches are complementary, they coincide in capturing elongation as the main dimension of variability. Furthermore, the choice of approach led to different interpretations regarding the degree of morphological differentiation among taxonomic and feeding functional groups. We also use each morphology dataset to compute community-scale morphological diversity on Palauan reefs and investigate how the choice of dataset affects the detection of differences among sites and wave exposure levels. The exact ranking of sites from highest to lowest morphological diversity was sensitive to the approach used, but not the broad spatial pattern of morphological diversity. Conclusions regarding the effect of wave exposure on morphological diversity were robust to the approach used. Biodiversity hotspots (e.g., areas of exceptionally high diversity and/or endemism) are considered important conservation targets but their location may depend on the biodiversity metric used. In the same vein, our results caution against labelling particular sites as morphological diversity hotspots when metrics consider only a single aspect of morphology.

6.
Sci Rep ; 12(1): 1468, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-35087129

RESUMO

Investigations of encounters between corals and microplastics have, to date, used particle concentrations that are several orders of magnitude above environmentally relevant levels. Here we investigate whether concentrations closer to values reported in tropical coral reefs affect sediment shedding and heterotrophy in reef-building corals. We show that single-pulse microplastic deposition elicits significantly more coral polyp retraction than comparable amounts of calcareous sediments. When deposited separately from sediments, microplastics remain longer on corals than sediments, through stronger adhesion and longer periods of examination by the coral polyps. Contamination of sediments with microplastics does not retard corals' sediment clearing rates. Rather, sediments speed-up microplastic shedding, possibly affecting its electrostatic behaviour. Heterotrophy rates are three times higher than microplastic ingestion rates when corals encounter microzooplankton (Artemia salina cysts) and microplastics separately. Exposed to cysts-microplastic combinations, corals feed preferentially on cysts regardless of microplastic concentration. Chronic-exposure experiments should test whether our conclusions hold true under environmental conditions typical of inshore marginal coral reefs.


Assuntos
Antozoários/metabolismo , Microplásticos/efeitos adversos , Poluentes Químicos da Água/efeitos adversos , Animais , Artemia/metabolismo , Recifes de Corais , Sedimentos Geológicos/química , Processos Heterotróficos , Microplásticos/química , Eletricidade Estática , Poluentes Químicos da Água/química , Zooplâncton/metabolismo
7.
Mar Environ Res ; 173: 105535, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34879290

RESUMO

In the Southwestern Atlantic reefs (SWA), some species of massive scleractinians and zoantharians are adapted to turbid waters, periodic desiccation, and sediment resuspension events. Moreover, phase shifts in this region have mostly been characterized by the emergence of algae and, less typically, zoantharians. However, nutrient excess and organic pollution are key drivers of the hard coral habitat degradation and may, thus, favor the emergence of novel zoantharian-dominated habitats. Many zoantharian species, particularly those from the genera Palythoa and Zoanthus, have traits that could help them thrive under conditions detrimental to reef-building corals, including rapid growth, several asexual reproduction strategies, high morphological plasticity, and generalist nutrient acquisition strategies. Thus, in a near future, stress-tolerant zoantharians may thrive in nutrient-enriched subtidal SWA locations under low heat stress, such as, upwelling. Overall, coral-zoantharian phase shifts in the SWA may decrease the species richness of reef communities, ultimately influencing ecosystem functioning and services, such as the provision of nursery habitats, fish biomass production, and coastline protection. However, zoantharians will also be threatened at intertidal zones, which are expected to experience higher heat stress, solar radiation, and sea-level rise. Although zoantharians appear to cope well with some local stressors (e.g., decreasing water quality), they are vulnerable to climate change (e.g., heatwaves), invasive species (Tubastraea spp.), microplastics, diseases, and mostly restricted to a narrow depth range (0-15 m depth) in SWA reefs. This shallow zone is particularly affected by climate change, compressing the three-dimensional habitat and limiting depth refugia in deeper SWA reefs. As mesophotic ecosystems have been hypothesized as short-term refuges to disturbances for some species, the narrow depth limit of zoantharians seems to be a potential factor that might increase their vulnerability to growing climate change pressures in SWA shallow-water reefs. Together, these could lead to both range expansions in some locations and loss of suitable reef habitats in other sites. Additional research is needed to better understand the systemic responses of these novel SWA reefs to the concert of increasing and interactive local and global stressors, and their implications for ecosystem functioning and service provisions.


Assuntos
Antozoários , Recifes de Corais , Animais , Mudança Climática , Ecossistema , Plásticos
8.
Front Plant Sci ; 12: 709257, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34795681

RESUMO

Tropical seagrass meadows are formed by an array of seagrass species that share the same space. Species sharing the same plot are competing for resources, namely light and inorganic nutrients, which results in the capacity of some species to preempt space from others. However, the drivers behind seagrass species competition are not completely understood. In this work, we studied the competitive interactions among tropical seagrass species of Unguja Island (Zanzibar, Tanzania) using a trait-based approach. We quantified the abundance of eight seagrass species under different trophic states, and selected nine traits related to light and inorganic nutrient preemption to characterize the functional strategy of the species (leaf maximum length and width, leaves per shoot, leaf mass area, vertical rhizome length, shoots per meter of ramet, rhizome diameter, roots per meter of ramet, and root maximum length). From the seagrass abundance we calculated the probability of space preemption between pairs of seagrass species and for each individual seagrass species under the different trophic states. Species had different probabilities of space preemption, with the climax species Thalassodendron ciliatum, Enhalus acoroides, Thalassia hemprichii, and the opportunistic Cymodocea serrulata having the highest probability of preemption, while the pioneer and opportunistic species Halophila ovalis, Syringodium isoetifolium, Halodule uninervis, and Cymodocea rotundata had the lowest. Traits determining the functional strategy showed that there was a size gradient across species. For two co-occurring seagrass species, probability of preemption was the highest for the larger species, it increased as the size difference between species increased and was unaffected by the trophic state. Competitive interactions among seagrass species were asymmetrical, i.e., negative effects were not reciprocal, and the driver behind space preemption was determined by plant size. Seagrass space preemption is a consequence of resource competition, and the probability of a species to exert preemption can be calculated using a trait-based approach.

9.
Ecol Evol ; 11(19): 13218-13231, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34646464

RESUMO

Trait-based approaches are increasingly used to study species assemblages and understand ecosystem functioning. The strength of these approaches lies in the appropriate choice of functional traits that relate to the functions of interest. However, trait-function relationships are often supported by weak empirical evidence.Processes related to digestion and nutrient assimilation are particularly challenging to integrate into trait-based approaches. In fishes, intestinal length is commonly used to describe these functions. Although there is broad consensus concerning the relationship between fish intestinal length and diet, evolutionary and environmental forces have shaped a diversity of intestinal morphologies that is not captured by length alone.Focusing on coral reef fishes, we investigate how evolutionary history and ecology shape intestinal morphology. Using a large dataset encompassing 142 species across 31 families collected in French Polynesia, we test how phylogeny, body morphology, and diet relate to three intestinal morphological traits: intestinal length, diameter, and surface area.We demonstrate that phylogeny, body morphology, and trophic level explain most of the interspecific variability in fish intestinal morphology. Despite the high degree of phylogenetic conservatism, taxonomically unrelated herbivorous fishes exhibit similar intestinal morphology due to adaptive convergent evolution. Furthermore, we show that stomachless, durophagous species have the widest intestines to compensate for the lack of a stomach and allow passage of relatively large undigested food particles.Rather than traditionally applied metrics of intestinal length, intestinal surface area may be the most appropriate trait to characterize intestinal morphology in functional studies.

10.
J Orthod ; 47(3): 213-222, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32564707

RESUMO

OBJECTIVE: To establish the association between malocclusion severity and orthodontic case complexity as assessed by the Dental Aesthetic Index (DAI) and the American Board of Orthodontics Discrepancy Index (ABO-DI), respectively. DESIGN: Cross-sectional study. SETTING: Pre-treatment dental casts and radiographs from 500 individuals (294 women and 206 men; mean age = 26.06 ± 11.58 years) were randomly selected from the orthodontics department of a private university. METHODS: Malocclusion severity was assessed using DAI and case complexity was evaluated with ABO-DI. Three previously calibrated operators performed the measurements. Spearman's correlation analysis, Mann-Whitney U test, Kruskal-Wallis test and a linear generalised model were used for statistical evaluation (P < 0.05 was considered significant). RESULTS: Although the correlation (r = 0.45; P < 0.0001) between malocclusion severity and case complexity was moderate, strong evidence of an association (P < 0.001) between dichotomised DAI and ABO-DI total scores was observed. The linear generalised model showed that for each point of increase in DAI score, the ABO-DI score increased an average of 0.3624 points (P < 0.0001). CONCLUSION: An association between malocclusion severity and case complexity is suggested. A linear generalised model could be used to predict the complexity of the case from the malocclusion severity (DAI score).


Assuntos
Má Oclusão , Ortodontia , Estudos Transversais , Estética Dentária , Feminino , Humanos , Masculino , Ortodontia Corretiva
11.
Ecol Appl ; 29(8): e01981, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31349375

RESUMO

Securing ecosystem functions is challenging, yet common priority in conservation efforts. While marine parks aim to meet this challenge by regulating fishing through zoning plans, their effectiveness hinges on compliance levels and may respond to changes in fishing practices. Here we use a speciose assemblage of nominally herbivorous reef fish in Karimunjawa National Park (zoned since 1989) to investigate whether areas subject to a restrictive management regime sustained higher biomass over seven years compared to areas where moderate and permissive regulations apply. Using a trait-based approach we characterize the functional space of the entire species pool and ask whether changes in biomass translate into changes in functional structure. We track changes in predator biomass, benthic community structure, and fishing practices that could influence herbivore trajectories. Overall herbivore biomass doubled in 2012 compared to 2006-2009 and remained high in 2013 across all management regimes. We found no evidence that this biomass build-up resulted from predator depletion or increased food availability but suggest it emerged in response to a park-wide cessation of fishing with large drive nets known as muroami. The biomass increase was accompanied by a modest increase in taxonomic richness and a slight decrease in community-scale rarity that did not alter functional redundancy levels. Subtle changes in both functional specialization and identity of assemblages emerged as generalist species with low intrinsic vulnerability to fishing recovered sooner than more vulnerable specialists. While this implies a recovery of mechanisms responsible for the grazing of algal turfs and detritus, restoring other facets of herbivory (e.g., macroalgal consumption) may require more time. An increase in the cost-benefit ratio per journey of muroami fishing facilitated a ban on muroami nets that met minimal resistance. Similar windows of opportunity may emerge elsewhere in which gear-based regulations can supplement zoning plans, especially when compliance is low. This does not advocate for implementing such regulations once a fishery has become unprofitable. Rather, it underlines their importance for breaking the cycle of resource depletion and low compliance to zoning, thus alleviating the resulting threats to food security and ecosystem integrity.


Assuntos
Recifes de Corais , Herbivoria , Acidentes por Quedas , Animais , Biomassa , Conservação dos Recursos Naturais , Ecossistema , Peixes , Indonésia , Parques Recreativos
12.
PeerJ ; 5: e3818, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29062597

RESUMO

The invasion of Indo-Pacific lionfish is one of the most pressing concerns in the context of coral reef conservation throughout the Caribbean. Invasive lionfish threaten Caribbean fish communities by feeding on a wide range of native prey species, some of which have high ecological and economic value. In Roatan (Honduras) a local non-governmental organisation (i.e. Roatan Marine Park) trains residents and tourists in the use of spears to remove invasive lionfish. Here, we assess the effectiveness of local removal efforts in reducing lionfish populations. We ask whether reefs subject to relatively frequent removals support more diverse and abundant native fish assemblages compared to sites were no removals take place. Lionfish biomass, as well as density and diversity of native prey species were quantified on reefs subject to regular and no removal efforts. Reefs subject to regular lionfish removals (two to three removals month-1) with a mean catch per unit effort of 2.76 ± 1.72 lionfish fisher-1 h-1 had 95% lower lionfish biomass compared to non-removal sites. Sites subject to lionfish removals supported 30% higher densities of native prey-sized fishes compared to sites subject to no removal efforts. We found no evidence that species richness and diversity of native fish communities differ between removal and non-removal sites. We conclude that opportunistic voluntary removals are an effective management intervention to reduce lionfish populations locally and might alleviate negative impacts of lionfish predation. We recommend that local management and the diving industry cooperate to cost-effectively extend the spatial scale at which removal regimes are currently sustained.

13.
Rev Biol Trop ; 58 Suppl 1: 107-31, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20873044

RESUMO

Long-term monitoring data provide a basis to recognize changes in coral reef communities and to implement appropriate management strategies. Unfortunately, coral reef dynamics have been poorly documented at any temporal scale in the Southern Caribbean. Through the "National Monitoring System of Coral Reefs in Colombia" (Spanish acronym: SIMAC), we assessed 32 permanent plots at different depth levels in six reefs areas of the Colombian Caribbean from 1998 to 2004. Temporal trends in coral and algal cover were evaluated by repeated measures ANOVA. The model included the effect of depth levels (a fixed effect), monitoring plots (a random effect) as a nested factor within depths, and time (repeated factor). We found high spatial variability in major benthic components. Overall means indicated that algae were the most abundant biotic component in nearly all areas, ranging from 30.3% at Rosario to 53.3% at San Andrés. Live coral cover varied considerably from 10.1% at Santa Marta up to 43.5% at Urabá. Coral and algae cover per se are not always accurate reef indicators and therefore they need supplementary information. Temporal analyses suggested relative stability of coral and algal cover along the study but the causes for the observed trends were rarely identified. A significant decrease (p = 0.042) in coral cover was only identified for some monitoring plots in Tayrona-time x plot (depth level) interaction, and importantly, few coral species explained this trend. Significant increase (p = 0.005) in algal cover was observed over time for most plots in Rosario. Temporal trajectories in algal cover were influenced by depth-significant time x depth interaction-in San Andrés (increase, p = 0.004) and Urabá (decrease, p = 0.027). Algae trends were mainly explained by changes in algal turfs. Monitoring programs must focus on the mechanisms mediating the changes, in particular those concerning coral recovery and reef resilience in the current context of climate change.


Assuntos
Antozoários/classificação , Recifes de Corais , Monitoramento Ambiental/métodos , Eucariotos/classificação , Animais , Antozoários/fisiologia , Colômbia , Humanos , Densidade Demográfica , Dinâmica Populacional , Conglomerados Espaço-Temporais
14.
Rev. biol. trop ; 58(supl.1): 107-131, May 2010. graf, tab
Artigo em Inglês | LILACS | ID: lil-637958

RESUMO

Long-term monitoring data provide a basis to recognize changes in coral reef communities and to implement appropriate management strategies. Unfortunately, coral reef dynamics have been poorly documented at any temporal scale in the Southern Caribbean. Through the "National Monitoring System of Coral Reefs in Colombia" (Spanish acronym: SIMAC), we assessed 32 permanent plots at different depth levels in six reefs areas of the Colombian Caribbean from 1998 to 2004. Temporal trends in coral and algal cover were evaluated by repeated measures ANOVA. The model included the effect of depth levels (a fixed effect), monitoring plots (a random effect) as a nested factor within depths, and time (repeated factor). We found high spatial variability in major benthic components. Overall means indicated that algae were the most abundant biotic component in nearly all areas, ranging from 30.3% at Rosario to 53.3% at San Andrés. Live coral cover varied considerably from 10.1% at Santa Marta up to 43.5% at Urabá. Coral and algae cover per se are not always accurate reef indicators and therefore they need supplementary information. Temporal analyses suggested relative stability of coral and algal cover along the study but the causes for the observed trends were rarely identified. A significant decrease (p=0.042) in coral cover was only identified for some monitoring plots in Tayrona-time x plot (depth level) interaction, and importantly, few coral species explained this trend. Significant increase (p=0.005) in algal cover was observed over time for most plots in Rosario. Temporal trajectories in algal cover were influenced by depth-significant time x depth interaction-in San Andrés (increase, p=0.004) and Urabá (decrease, p=0.027). Algae trends were mainly explained by changes in algal turfs. Monitoring programs must focus on the mechanisms mediating the changes, in particular those concerning coral recovery and reef resilience in the current context of climate change. Rev. Biol. Trop. 58 (Suppl. 1): 107-131. Epub 2010 May 01.


Este trabajo contiene el primer análisis temporal de la información obtenida por el Sistema Nacional de Monitoreo de Arrecifes Coralinos en Colombia (SIMAC). Entre 1998 y el 2004 se monitorearon un total de 32 parcelas permanentes ubicadas a diferentes niveles de profundidad en seis áreas arrecifales del Caribe colombiano. Los patrones temporales de algas y corales fueron evaluados mediante análisis de varianza de medidas repetidas. Los promedios generales indicaron que las algas dominaron en la mayoría de las áreas evaluadas, variando de 30.3% (Rosario) hasta 53.3% (San Andrés). La cobertura coralina fluctuó considerablemente entre 10.1% (Santa Marta) y 43.5% (Urabá). Los arrecifes estudiados han permanecido relativamente estables durante el periodo evaluado en términos de algas y corales. El único cambio significativo en la cobertura se detectó en algunas parcelas de monitoreo del Tayrona, y pocas especies coralinas explicaron la tendencia de disminución. En Rosario se detectó una tendencia significativa de incremento para las algas en la mayoría de las parcelas. En San Andrés y Urabá las tendencias temporales (aumento y disminución respectivamente) se presentaron en ciertos niveles de profundidad. En estas dos áreas las tendencias en la cobertura de las algas fueron explicadas principalmente por cambios en los tapetes algales. En general las causas de los patrones observados no pudieron identificarse. Los programas de monitoreo deben evaluar no solo las tendencias generales de algas y corales sino también las de sus componentes (especies de coral y grupos funcionales de algas). Así mismo, deben enfocarse en evaluar los mecanismos involucrados en los cambios, en especial aquellos relacionados con la recuperación coralina y la resiliencia arrecifal, de manera que se pueda enfrentar el deterioro arrecifal en el actual contexto de cambio climático.


Assuntos
Animais , Humanos , Antozoários/classificação , Recifes de Corais , Monitoramento Ambiental/métodos , Eucariotos/classificação , Antozoários/fisiologia , Colômbia , Densidade Demográfica , Dinâmica Populacional , Conglomerados Espaço-Temporais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...