Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Vet Res ; 20(1): 169, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698383

RESUMO

BACKGROUND: Bovine mastitis is one of the most widespread diseases affecting cattle, leading to significant losses for the dairy industry. Currently, the so-called gold standard in mastitis diagnosis involves determining the somatic cell count (SCC). Apart from a number of advantages, this method has one serious flaw: It does not identify the etiological factor causing a particular infection, making it impossible to introduce targeted antimicrobial therapy. This can contribute to multidrug-resistance in bacterial species. The diagnostic market lacks a test that has the advantages of SCC and also recognizes the species of pathogen causing the inflammation. Therefore, the aim of our study was to develop a lateral flow immunoassay (LFIA) based on elongation factor Tu for identifying most prevalent Gram-positive cocci responsible for causing mastitis including Streptococcus uberis, Streptococcus agalactiae and Staphylococcus aureus. RESULTS: As a result, we showed that the assay for S. uberis detection demonstrated a specificity of 89.02%, a sensitivity of 43.59%, and an accuracy of 80.3%. In turn, the second variant - assay for Gram-positive cocci reached a specificity of 95.59%, a sensitivity of 43.28%, and an accuracy of 78.33%. CONCLUSIONS: Our study shows that EF-Tu is a promising target for LFIA and we have delivered evidence that further evaluation could improve test parameters and fill the gap in the mastitis diagnostics market.


Assuntos
Mastite Bovina , Streptococcus agalactiae , Streptococcus , Mastite Bovina/diagnóstico , Mastite Bovina/microbiologia , Animais , Bovinos , Feminino , Streptococcus agalactiae/isolamento & purificação , Streptococcus/isolamento & purificação , Staphylococcus aureus/isolamento & purificação , Sensibilidade e Especificidade , Infecções Estreptocócicas/veterinária , Infecções Estreptocócicas/diagnóstico , Infecções Estreptocócicas/microbiologia , Cocos Gram-Positivos/isolamento & purificação , Imunoensaio/veterinária , Imunoensaio/métodos , Infecções Estafilocócicas/veterinária , Infecções Estafilocócicas/diagnóstico , Infecções Estafilocócicas/microbiologia , Leite/microbiologia , Leite/citologia
2.
Int J Mol Sci ; 24(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36768392

RESUMO

Two distinct intracellular pathogens, namely Mycobacterium tuberculosis (Mtb) and Toxoplasma gondii (Tg), cause major public health problems worldwide. In addition, serious and challenging health problems of co-infections of Tg with Mtb have been recorded, especially in developing countries. Due to this fact, as well as the frequent cases of resistance to the current drugs, novel anti-infectious therapeutics, especially those with dual (anti-Tg and anti-Mtb) modes of action, are needed. To address this issue, we explored the anti-Tg potential of thiazolidinedione-based (TZD-based) hybrid molecules with proven anti-Mtb potency. Several TZD hybrids with pyridine-4-carbohydrazone (PCH) or thiosemicarbazone (TSC) structural scaffolds were more effective and more selective than sulfadiazine (SDZ) and trimethoprim (TRI). Furthermore, all of these molecules were more selective than pyrimethamine (PYR). Further studies for the most potent TZD-TSC hybrids 7, 8 and 10 and TZD-PCH hybrid molecule 2 proved that these compounds are non-cytotoxic, non-genotoxic and non-hemolytic. Moreover, they could cross the blood-brain barrier (BBB), which is a critical factor linked with ideal anti-Tg drug development. Finally, since a possible link between Tg infection and the risk of glioblastoma has recently been reported, the cytotoxic potential of TZD hybrids against human glioblastoma cells was also evaluated. TZD-PCH hybrid molecule 2 was found to be the most effective, with an IC50 of 19.36 ± 1.13 µg/mL against T98G cells.


Assuntos
Glioblastoma , Mycobacterium tuberculosis , Toxoplasma , Toxoplasmose , Tuberculose , Humanos , Toxoplasmose/tratamento farmacológico
3.
Eur J Med Chem ; 244: 114812, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36274280

RESUMO

The increasing resistance of Toxoplasma gondii to drugs and side effects of therapy indicate that specific treatment for these parasites is still needed. The 4-arylthiosemicarbazide derivatives seem to be a solution to this challenge because they have low cytotoxicity against host cells and high anti-T. gondii activity. The molecular mechanism for these compounds is related to the inhibition of tyrosine amino acids involved in the proliferation and parasitophorous vacuole formation. The pharmacokinetic analysis shows that 1-(4-Methylimidazol-5-oyl)-4-(4-nitrophenyl)thiosemicarbazide and 4-(3-Iodophenyl)-1-(4-methylimidazol-5-oyl)thiosemicarbazide administered intragastrically pass into the bloodstream and cross the blood-brain barrier, and the absorption of both compounds is first-order absorption. Toxicity analysis shows that our derivatives possess lower toxicity than the routinely used drugs trimethoprim, sulfadiazine and pyrimethamine, as was observed in the level of liver enzymes and creatinine. Both derivatives are highly potent antiparasitic agents against T. gondii, prolonged survival and cure parasite-infected mice. Additionally, significant reductions in cyst formation in the brain and heart were observed, but the highest decreases were noted in muscle and the level of bradyzoites was similar to these observed in mice treated with commercially used drugs. Collectively, the obtained results support the conclusion that both compounds are highly efficacious in a mouse model of acute and chronic toxoplasmosis.


Assuntos
Antiprotozoários , Semicarbazidas , Toxoplasma , Toxoplasmose , Animais , Camundongos , Antiprotozoários/química , Antiprotozoários/farmacocinética , Antiprotozoários/toxicidade , Semicarbazidas/química , Semicarbazidas/farmacocinética , Semicarbazidas/toxicidade , Toxoplasma/efeitos dos fármacos , Toxoplasmose/tratamento farmacológico
4.
J Enzyme Inhib Med Chem ; 37(1): 2621-2634, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36165032

RESUMO

A safer treatment for toxoplasmosis would be achieved by improving the selectivity profile of novel chemotherapeutics compared to the standard therapy pyrimethamine (PYR) and sulfadiazine (SDZ). We previously reported on the identification of the compounds with imidazole-thiosemicarbazide scaffold as potent and selective anti-Toxoplasma gondii (T. gondii) agents. In our current research, we report on the optimisation of this chemical scaffold leading to the discovery cyclic analogue 20 b with s-triazole core structure. This compound displayed prominent CC30 to IC50 selectivity index (SI) of 70.72, making it 160-fold more selective than SDZ, 11-fold more selective than PYR, and 4-fold more selective than trimethoprim (TRI). Additionally, this compound possesses prerequisite drug-like anti-Toxoplasma properties to advance into preclinical development; it showed ability to cross the BBB, did not induce genotoxic and haemolytic changes in human cells, and as well as it was characterised by low cellular toxicity.


Assuntos
Antiprotozoários , Toxoplasma , Antiprotozoários/farmacologia , Humanos , Imidazóis , Pirimetamina/farmacologia , Sulfadiazina/farmacologia , Sulfadiazina/uso terapêutico , Triazóis/farmacologia , Trimetoprima
5.
Int J Mol Sci ; 23(6)2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35328634

RESUMO

Approximately one-third of the human population is infected with the intracellular cosmopolitan protozoan Toxoplasma gondii (Tg), and a specific treatment for this parasite is still needed. Additionally, the increasing resistance of Tg to drugs has become a challenge for numerous research centers. The high selectivity of a compound toward the protozoan, along with low cytotoxicity toward the host cells, form the basis for further research, which aims at determining the molecular targets of the active compounds. Thiosemicarbazide derivatives are biologically active organic compounds. Previous studies on the initial preselection of 58 new 4-arylthiosemicarbazide derivatives in terms of their anti-Tg activity and selectivity made it possible to select two promising derivatives for further research. One of the important amino acids involved in the proliferation of Tg and the formation of parasitophorous vacuoles is tyrosine, which is converted by two unique aromatic amino acid hydroxylases to levodopa. Enzymatic studies with two derivatives (R: para-nitro and meta-iodo) and recombinant aromatic amino acid hydroxylase (AAHs) obtained in the E. coli expression system were performed, and the results indicated that toxoplasmic AAHs are a molecular target for 4-arylthiosemicarbazide derivatives. Moreover, the drug affinity responsive target stability assay also confirmed that the selected compounds bind to AAHs. Additionally, the anti-inflammatory activity of these derivatives was tested using THP1-Blue™ NF-κB reporter cells due to the similarity of the thiosemicarbazide scaffold to thiosemicarbazone, both of which are known NF-κB pathway inhibitors.


Assuntos
Anti-Inflamatórios , Antiprotozoários , Oxigenases de Função Mista , Semicarbazidas , Toxoplasma , Anti-Inflamatórios/farmacologia , Antiprotozoários/farmacologia , Escherichia coli , Humanos , Oxigenases de Função Mista/antagonistas & inibidores , NF-kappa B , Semicarbazidas/farmacologia , Toxoplasma/efeitos dos fármacos , Tirosina
6.
Int J Mol Sci ; 23(5)2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35269991

RESUMO

Tubular polymeric structures have been recognized in the treatment of peripheral nerves as comparable to autologous grafting. The best therapeutic outcomes are obtained with conduits releasing therapeutic molecules. In this study, a new approach for the incorporation of biologically active agent-loaded microspheres into the structure of chitosan/polycaprolactone conduits was developed. The support of a polycaprolactone helix formed by 3D melt extrusion was coated with dopamine in order to adsorb nerve growth factor-loaded microspheres. The complex analysis of the influence of process factors on the coverage efficiency of polycaprolactone helix by nerve grow factor-loaded microspheres was analyzed. Thus, the PCL helix characterized with the highest adsorption of microspheres was subjected to nerve growth factor release studies, and finally incorporated into chitosan hydrogel deposit through the process of electrophoretic deposition. It was demonstrated by chemical and physical tests that the chitosan/polycaprolactone conduit meets the requirements imposed on peripheral nerve implants, particularly mimicking mechanical properties of surrounding soft tissue. Moreover, the conduit may support regrowing nerves for a prolonged period, as its structure and integrity persist upon incubation in lysozyme-contained PBS solution up to 28 days at body temperature. In vitro cytocompatibility toward mHippoE-18 embryonic hippocampal cells of the chitosan/polycaprolactone conduit was proven. Most importantly, the developed conduits stimulate axonal growth and support monocyte activation, the latter is advantageous especially at early stages of nerve regeneration. It was demonstrated that, through the described approach for controlling spatiotemporal release of nerve growth factors, these biocompatible structures adjusted to the specific peripheral nerve injury case can be manufactured.


Assuntos
Quitosana , Quitosana/química , Quitosana/farmacologia , Fator de Crescimento Neural/farmacologia , Regeneração Nervosa/fisiologia , Nervos Periféricos/fisiologia , Poliésteres , Nervo Isquiático/fisiologia
7.
Cells ; 10(12)2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34943984

RESUMO

Mycobacterium tuberculosis (Mtb) is an intracellular pathogenic bacterium and the causative agent of tuberculosis. This disease is one of the most ancient and deadliest bacterial infections, as it poses major health, social and economic challenges at a global level, primarily in low- and middle-income countries. The lack of an effective vaccine, the long and expensive drug therapy, and the rapid spread of drug-resistant strains of Mtb have led to the re-emergence of tuberculosis as a global pandemic. Here, we assessed the in vitro activity of new imidazole-thiosemicarbazide derivatives (ITDs) against Mtb infection and their effects on mycobacterial biofilm formation. Cytotoxicity studies of the new compounds in cell lines and human monocyte-derived macrophages (MDMs) were performed. The anti-Mtb activity of ITDs was evaluated by determining minimal inhibitory concentrations of resazurin, time-kill curves, bacterial intracellular growth and the effect on biofilm formation. Mutation frequency and whole-genome sequencing of mutants that were resistant to ITDs were performed. The antimycobacterial potential of ITDs with the ability to penetrate Mtb-infected human macrophages and significantly inhibit the intracellular growth of tubercle bacilli and suppress Mtb biofilm formation was observed.


Assuntos
Imidazóis/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Semicarbazidas/farmacologia , Tuberculose/tratamento farmacológico , Antituberculosos , Biofilmes/efeitos dos fármacos , Linhagem Celular , Humanos , Imidazóis/química , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/patogenicidade , Tuberculose/microbiologia , Tuberculose/patologia
8.
J Enzyme Inhib Med Chem ; 36(1): 1145-1164, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34074198

RESUMO

We report herein anti-proliferation effects of 4-arylthiosemicarbazides, with a cyclopentane substitution at N1 position, on highly virulent RH strain of Toxoplasma gondii. Among them, the highest in vitro anti-Toxoplasma activity was found with the meta-iodo derivative. Further experiments demonstrated inhibitory effects of thiosemicarbazides on tyrosinase (Tyr) activity, and good correlation was found between percentage of Tyr inhibition and IC50Tg. To confirm the concept that thiosemicarbazides are able to disrupt tyrosine metabolism in Toxoplasma tachyzoites, the most potent Tyr inhibitors were tested for their efficacy of T. gondii growth inhibition. All of them significantly reduced the number of tachyzoites in the parasitophorous vacuoles (PVs) compared to untreated cells, as well as inhibited tachyzoites growth by impeding cell division. Collectively, these results indicate that compounds with the thiosemicarbazide scaffold are able to disrupt tyrosine metabolism in Toxoplasma tachyzoites by deregulation of their crucial enzyme tyrosine hydroxylase (TyrH).


Assuntos
Antiprotozoários/farmacologia , Inibidores Enzimáticos/farmacologia , Monofenol Mono-Oxigenase/antagonistas & inibidores , Semicarbazidas/farmacologia , Toxoplasma/efeitos dos fármacos , Antiprotozoários/síntese química , Antiprotozoários/química , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Estrutura Molecular , Monofenol Mono-Oxigenase/metabolismo , Testes de Sensibilidade Parasitária , Semicarbazidas/síntese química , Semicarbazidas/química , Relação Estrutura-Atividade , Toxoplasma/crescimento & desenvolvimento
9.
Cells ; 10(5)2021 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-33946881

RESUMO

Congenital and acquired toxoplasmosis caused by the food- and water-born parasite Toxoplasma gondii (T. gondii) is one of the most prevalent zoonotic infection of global importance. T. gondii is an obligate intracellular parasite with limited capacity for extracellular survival, thus a successful, efficient and robust host cell invasion process is crucial for its survival, proliferation and transmission. In this study, we screened a series of novel 1,3,4-thiadiazole-2-halophenylamines functionalized at the C5 position with the imidazole ring (1b-12b) for their effects on T. gondii host cell invasion and proliferation. To achieve this goal, these compounds were initially subjected to in vitro assays to assess their cytotoxicity on human fibroblasts and then antiparasitic efficacy. Results showed that all of them compare favorably to control drugs sulfadiazine and trimethoprim in terms of T. gondii growth inhibition (IC50) and selectivity toward the parasite, expressed as selectivity index (SI). Subsequently, the most potent of them with meta-fluoro 2b, meta-chloro 5b, meta-bromo 8b, meta-iodo 11b and para-iodo 12b substitution were tested for their efficacy in inhibition of tachyzoites invasion and subsequent proliferation by direct action on established intracellular infection. All the compounds significantly inhibited the parasite invasion and intracellular proliferation via direct action on both tachyzoites and parasitophorous vacuoles formation. The most effective was para-iodo derivative 12b that caused reduction in the percentage of infected host cells by 44% and number of tachyzoites per vacuole by 93% compared to non-treated host cells. Collectively, these studies indicate that 1,3,4-thiadiazoles 1b-12b, especially 12b with IC50 of 4.70 µg/mL and SI of 20.89, could be considered as early hit compounds for future design and synthesis of anti-Toxoplasma agents that effectively and selectively block the invasion and subsequent proliferation of T. gondii into host cells.


Assuntos
Antiprotozoários/toxicidade , Tiadiazóis/toxicidade , Toxoplasma/efeitos dos fármacos , Antiprotozoários/síntese química , Linhagem Celular , Proliferação de Células , Humanos , Tiadiazóis/síntese química , Toxoplasma/fisiologia
10.
Cells ; 9(3)2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32138343

RESUMO

We have recently found that selected thio-disaccharides possess bactericidal effects against Mycobacterium tuberculosis but not against Escherichia coli or Staphylococcus aureus. Here, we selected spontaneous mutants displaying resistance against the investigated thio-glycoside. According to next-generation sequencing, four of six analyzed mutants which were resistant to high concentrations of the tested chemical carried nonsynonymous mutations in the gene encoding the PPE51 protein. The complementation of these mutants with an intact ppe51 gene returned their sensitivity to the wild-type level. The uptake of tritiated thio-glycoside was significantly more abundant in wild-type Mycobacterium tuberculosis compared to the strain carrying the mutated ppe51 gene. The ppe51 mutations or CRISPR-Cas9-mediated downregulation of PPE51 expression affected the growth of mutant strains on minimal media supplemented with disaccharides (maltose or lactose) but not with glycerol or glucose as the sole carbon and energy source. Taking the above into account, we postulate that PPE51 participates in the uptake of disaccharides by tubercle bacilli.


Assuntos
Proteínas de Bactérias/metabolismo , Mycobacterium tuberculosis/efeitos dos fármacos , Animais , Proteínas de Bactérias/genética , Transporte Biológico , Dissacarídeos/farmacocinética , Dissacarídeos/farmacologia , Regulação para Baixo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Coelhos
11.
Eur J Med Chem ; 184: 111765, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31629163

RESUMO

Synthesis and investigation of anti-Toxoplasma gondii activity of novel thiazoles containing benzo [b]thiophene moiety are presented. Among the derivatives, compound 3k with adamantyl group shows exceptionally high potency against Me49 strain with IC50 (8.74 µM) value which is significantly lower than the activity of trimethoprim (IC50 39.23 µM). In addition, compounds 3a, 3b and 3k showed significant activity against RH strain (IC50 51.88-83.49 µM). The results of the cytotoxicity evaluation showed that Toxoplasma gondii growth was inhibited at non-cytotoxic concentrations for the mammalian L929 fibroblast (CC30 ∼ 880 µM). The most active compound 3k showed tyrosinase inhibition effect, with IC50 value of 328.5 µM. The binding energies calculated for compounds 3a-3e, 3k are strongly correlated with the experimentally determined values of tyrosinase inhibition activity. Moreover, the binding energies corresponding to the same ligands and calculated for both tyrosinase and tyrosine hydroxylase are also correlated with each other, suggesting that tyrosinase inhibitors may also have an inhibitory effect on tyrosine hydroxylase. Compounds 3j and 3k have also very strong antioxidant activity (IC50 15.9 and 15.5 µM), respectively, which is ten times higher than well-known antioxidant BHT.


Assuntos
Antioxidantes/farmacologia , Antiprotozoários/farmacologia , Inibidores Enzimáticos/farmacologia , Tiazóis/farmacologia , Tiofenos/farmacologia , Toxoplasma/efeitos dos fármacos , Animais , Antioxidantes/síntese química , Antioxidantes/química , Antiprotozoários/síntese química , Antiprotozoários/química , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Desenho de Fármacos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Camundongos , Simulação de Acoplamento Molecular , Estrutura Molecular , Monofenol Mono-Oxigenase/antagonistas & inibidores , Monofenol Mono-Oxigenase/metabolismo , Relação Estrutura-Atividade , Tiazóis/química , Tiofenos/química , Toxoplasma/enzimologia , Toxoplasma/crescimento & desenvolvimento , Tirosina 3-Mono-Oxigenase/antagonistas & inibidores , Tirosina 3-Mono-Oxigenase/metabolismo
12.
Molecules ; 24(17)2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31438527

RESUMO

Recent findings on the biological activity of thiazolidin-4-ones and taking into account the lack of effective drugs used in the treatment of toxoplasmosis, their numerous side effects, as well as the problem of drug resistance of parasites prompted us to look for new agents. We designed and synthesized a series of new thiazolidin-4-one derivatives through a two-step reaction between 4-substituted thiosemicarbazides with hydroxybenzaldehydes followed by the treatment with ethyl bromoacetate; maleic anhydride and dimethyl acetylenedicarboxylate afforded target compounds. The thiazolidin-4-one derivatives were used to assess the inhibition of Toxoplasma gondii growth in vitro. All active thiazolidine-4-one derivatives (12 compounds) inhibited T. gondii proliferation in vitro much better than used references drugs both sulfadiazine as well as the synergistic effect of sulfadiazine + trimethoprim (weight ratio 5:1). Most active among them derivatives 94 and 95 showed inhibition of proliferation at about 392-fold better than sulfadiazine and 18-fold better than sulfadiazine with trimethoprim. All active compounds (82-88 and 91-95) against T. gondii represent values from 1.75 to 15.86 (CC30/IC50) lower than no cytotoxic value (CC30).


Assuntos
Antiprotozoários/uso terapêutico , Sulfadiazina/uso terapêutico , Toxoplasma/efeitos dos fármacos , Trimetoprima/uso terapêutico , Animais , Antiprotozoários/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Combinação de Medicamentos , Humanos , Espectroscopia de Ressonância Magnética , Camundongos , Relação Estrutura-Atividade , Sulfadiazina/química , Tiossemicarbazonas/uso terapêutico , Toxoplasmose
13.
Molecules ; 24(8)2019 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-31022878

RESUMO

Employing a simple synthetic protocol, a series of highly effective halogen-substituted imidazole-thiosemicarbazides with anti-Toxoplasma gondii effects against the RH tachyzoites, much better than sulfadiazine, were obtained (IC50s 10.30-113.45 µg/mL vs. ~2721.45 µg/mL). The most potent of them, 12, 13, and 15, blocked the in vitro proliferation of T. gondii more potently than trimethoprim (IC50 12.13 µg/mL), as well. The results of lipophilicity studies collectively suggest that logP would be a rate-limiting factor for the anti-Toxoplasma activity of this class of compounds.


Assuntos
Semicarbazidas/síntese química , Relação Estrutura-Atividade , Toxoplasma/efeitos dos fármacos , Toxoplasmose/tratamento farmacológico , Animais , Halogênios/química , Humanos , Imidazóis/química , Imidazóis/farmacologia , Semicarbazidas/química , Sulfadiazina/farmacologia , Toxoplasma/patogenicidade , Toxoplasmose/parasitologia
14.
Molecules ; 24(3)2019 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-30744161

RESUMO

One of the key stages in the development of new therapies in the treatment of toxoplasmosis is the identification of new non-toxic small molecules with high specificity to Toxoplasma gondii. In the search for such structures, thiosemicarbazide-based compounds have emerged as a novel and promising leads. Here, a series of imidazole-thiosemicarbazides with suitable properties for CNS penetration was evaluated to determine the structural requirements needed for potent anti-Toxoplasma gondii activity. The best 4-arylthiosemicarbazides 3 and 4 showed much higher potency when compared to sulfadiazine at concentrations that are non-toxic to the host cells, indicating a high selectivity of their anti-toxoplasma activity.


Assuntos
Antiparasitários/farmacologia , Avaliação Pré-Clínica de Medicamentos , Semicarbazidas/farmacologia , Toxoplasma/efeitos dos fármacos , Animais , Antiparasitários/química , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Concentração Inibidora 50 , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Testes de Sensibilidade Parasitária , Semicarbazidas/química , Relação Estrutura-Atividade , Toxoplasmose/tratamento farmacológico , Toxoplasmose/parasitologia
15.
Med Chem Res ; 27(9): 2125-2140, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30220831

RESUMO

Synthesis and investigation of antifungal, anticonvulsant and anti-Toxoplasma gondii activities of ten novel (2-(cyclopropylmethylidene)hydrazinyl)thiazole 3a-3j are presented. Among the derivatives, compounds 3a-3d and 3f-3j possess very high activity against Candida spp. ATCC with MIC = 0.015-7.81 µg/ml. Compounds 3a-3d and 3f-3j possess also very high activity towards most of strains of Candida spp. isolated from clinical materials with MIC = 0.015-7.81 µg/ml. The activity of these compounds is similar and even higher than the activity of nystatin used as positive control. Additionally, compounds 3c and 3e showed interesting anticonvulsant activities in the MES test, whereas compounds 3f and 3i demonstrated the anticonvulsant activity in PTZ-induced seizures. Noteworthy, none of these compounds impaired animals' motor skills in the rotarod test. Moreover, thiazoles 3a, 3h, and 3j showed significant anti-Toxoplasma gondii activity, with IC50 values 31-52 times lower than those observed for sulfadiazine. The results of the cytotoxicity evaluation, anti-Candida spp. and anti-Toxoplasma gondii activity studies showed that Candida spp. and Toxoplasma gondii growth was inhibited at non-cytotoxic concentrations for the mouse L929 fibroblast and the African green monkey kidney (VERO) cells. Molecular docking studies indicated secreted aspartic proteinase (SAP) as possible antifungal target.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA