Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Theor Appl Genet ; 136(1): 8, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36656368

RESUMO

KEY MESSAGE: Functional redundancy and subfunctionalization of ß-hydroxylases in tetraploid wheat tissues open up opportunities for manipulation of carotenoid metabolism for trait improvement. The genetic diversity provided by subgenome homoeologs in allopolyploid wheat can be leveraged for developing improved wheat varieties with modified chemical traits, including profiles of carotenoids, which play critical roles in photosynthesis, photoprotection, and growth regulation. Carotenoid profiles are greatly influenced by hydroxylation catalyzed by ß-hydroxylases (HYDs). To genetically dissect the contribution of HYDs to carotenoid metabolism and wheat growth and yield, we isolated loss-of-function mutants of the two homoeologs of HYD1 (HYD-A1 and HYD-B1) and HYD2 (HYD-A2 and HYD-B2) from the sequenced ethyl methanesulfonate mutant population of the tetraploid wheat cultivar Kronos, and generated various mutant combinations. Although functional redundancy between HYD1 and HYD2 paralogs was observed in leaves, HYD1 homoeologs contributed more than HYD2 homoeologs to carotenoid ß-ring hydroxylation in this tissue. By contrast, the HYD2 homoeologs functioned toward production of lutein, the major carotenoid in mature grains, whereas HYD1 homoeologs had a limited role. These results collectively suggested subfunctionalization of HYD genes and homoeologs in different tissues of tetraploid wheat. Despite reduced photoprotective responses observed in the triple hyd-A1 hyd-B1 hyd-A2 and the quadruple hyd-A1 hyd-B1 hyd-A2 hyd-B2 combinatorial mutants, comprehensive plant phenotyping analysis revealed that all mutants analyzed were comparable to the control for growth, yield, and fertility, except for a slight delay in anthesis and senescence as well as accelerated germination in the quadruple mutant. Overall, this research takes steps toward untangling the functions of HYDs in wheat and has implications for improving performance and consumer traits of this economically important global crop.


Assuntos
Oxigenases de Função Mista , Triticum , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Tetraploidia , Carotenoides/metabolismo , Fotossíntese
3.
aBIOTECH ; 2(3): 299-313, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36303882

RESUMO

Woody plant species represent an invaluable reserve of biochemical diversity to which metabolic engineering can be applied to satisfy the need for commodity and specialty chemicals, pharmaceuticals, and renewable energy. Woody plants are particularly promising for this application due to their low input needs, high biomass, and immeasurable ecosystem services. However, existing challenges have hindered their widespread adoption in metabolic engineering efforts, such as long generation times, large and highly heterozygous genomes, and difficulties in transformation and regeneration. Recent advances in omics approaches, systems biology modeling, and plant transformation and regeneration methods provide effective approaches in overcoming these outstanding challenges. Promises brought by developments in this space are steadily opening the door to widespread metabolic engineering of woody plants to meet the global need for a wide range of sustainably sourced chemicals and materials.

4.
Front Genet ; 10: 1289, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31921317

RESUMO

Cereal grains have historically played a critical role in sustaining the caloric needs of the human population. The major cereal crops, wheat, rice, and maize, are widely cultivated and have been subjected to biofortification to enhance the vitamin and mineral nutrient content of grains. In contrast, grains of several other cereals as well as non-grass pseudocereals are naturally rich in micronutrients, but have yet to be explored for broad-scale cultivation and consumption. This mini review focuses on the micronutrient and phytochemical profiles of a few emerging (pseudo)cereals and examines the current constraints of their integration into the global food system. Prospects of leveraging whole genome sequence information and modern breeding technologies to promote the breeding and accessibility of these crops are also discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA