Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 126(4): 042701, 2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33576674

RESUMO

Proton capture on the excited isomeric state of ^{26}Al strongly influences the abundance of ^{26}Mg ejected in explosive astronomical events and, as such, plays a critical role in determining the initial content of radiogenic ^{26}Al in presolar grains. This reaction also affects the temperature range for thermal equilibrium between the ground and isomeric levels. We present a novel technique, which exploits the isospin symmetry of the nuclear force, to address the long-standing challenge of determining proton-capture rates on excited nuclear levels. Such a technique has in-built tests that strongly support its veracity and, for the first time, we have experimentally constrained the strengths of resonances that dominate the astrophysical ^{26m}Al(p,γ)^{27}Si reaction. These constraints demonstrate that the rate is at least a factor ∼8 lower than previously expected, indicating an increase in the stellar production of ^{26}Mg and a possible need to reinvestigate sensitivity studies involving the thermal equilibration of ^{26}Al.

2.
Phys Rev Lett ; 121(1): 012501, 2018 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-30028163

RESUMO

Lifetime measurements of excited states in the neutron-rich nucleus ^{43}S were performed by applying the recoil-distance method on fast rare-isotope beams in conjunction with the Gamma-Ray Energy Tracking In-beam Nuclear Array. The new data based on γγ coincidences and lifetime measurements resolve a doublet of (3/2^{-}) and (5/2^{-}) states at low excitation energies. Results were compared to the π(sd)-ν(pf) shell model and antisymmetrized molecular dynamics calculations. The consistency with the theoretical calculations identifies a possible appearance of three coexisting bands near the ground state of ^{43}S: the K^{π}=1/2^{-} band built on a prolate-deformed ground state, a band built on an isomer with a 1f_{7/2}^{-1} character, and a suggested excited band built on a newly discovered doublet state. The latter further confirms the collapse of the N=28 shell closure in the neutron-rich region.

3.
Phys Rev Lett ; 121(26): 262501, 2018 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-30636164

RESUMO

An enhanced low-energy electric dipole (E1) strength is identified for the weakly bound excited states of the neutron-rich isotope ^{27}Ne. The Doppler-shift lifetime measurements employing a combination of the γ-ray tracking array GRETINA, the plunger device, and the S800 spectrograph determine the lower limit of 0.030 e^{2} fm^{2} or 0.052 W.u. for the 1/2^{+}→3/2^{-} E1 transition in ^{27}Ne, representing one of the strongest E1 strengths observed among the bound discrete states in this mass region. This value is at least 30 times larger than that measured for the 3/2^{-} decay to the 3/2_{gs}^{+} ground state. A comparison of the present results to large-scale shell-model calculations points to an important role of core excitations and deformation in the observed E1 enhancement, suggesting a novel example of the electric dipole modes manifested in weakly bound deformed systems.

4.
Phys Rev Lett ; 117(18): 182701, 2016 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-27835017

RESUMO

The ^{19}Ne(p,γ)^{20}Na reaction is the second step of a reaction chain which breaks out from the hot CNO cycle, following the ^{15}O(α,γ)^{19}Ne reaction at the onset of x-ray burst events. We investigate the spectrum of the lowest proton-unbound states in ^{20}Na in an effort to resolve contradictions in spin-parity assignments and extract reliable information about the thermal reaction rate. The proton-transfer reaction ^{19}Ne(d,n)^{20}Na is measured with a beam of the radioactive isotope ^{19}Ne at an energy around the Coulomb barrier and in inverse kinematics. We observe three proton resonances with the ^{19}Ne ground state, at 0.44, 0.66, and 0.82 MeV c.m. energies, which are assigned 3^{+}, 1^{+}, and (0^{+}), respectively. In addition, we identify two resonances with the first excited state in ^{19}Ne, one at 0.20 MeV and one, tentatively, at 0.54 MeV. These observations allow us for the first time to experimentally quantify the astrophysical reaction rate on an excited nuclear state. Our experiment shows an efficient path for thermal proton capture in ^{19}Ne(p,γ)^{20}Na, which proceeds through ground state and excited-state capture in almost equal parts and eliminates the possibility for this reaction to create a bottleneck in the breakout from the hot CNO cycle.

5.
Phys Rev Lett ; 114(7): 071101, 2015 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-25763945

RESUMO

The 12C(α,γ)^16O reaction plays a fundamental role in astrophysics and needs to be known with accuracy better than 10%. Cascade γ transitions through the excited states of 16 O are contributing to the uncertainty. We constrained the contribution of the 0+ (6.05 MeV) and 3- (6.13 MeV) cascade transitions by measuring the asymptotic normalization coefficients for these states using the α-transfer reaction 6 Li(12C,d)^16O at sub-Coulomb energy. The contribution of the 0+ and 3- cascade transitions at 300 keV is found to be 1.96 ± 0.3 and 0.12 ± 0.04 keV b for destructive interference of the direct and resonance capture and 4.36 ± 0.45 and 1.44 ± 0.12 keV b for constructive interference, respectively. The combined contribution of the 0+ and 3- cascade transitions to the 12C(α,γ)16O reaction cross section at 300 keV does not exceed 4%. Significant uncertainties have been dramatically reduced.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...