Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Fluoresc ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592595

RESUMO

Sinapic acid (SA) and ferulic acid (FA) are bioactive compounds used in the food, pharmaceutical, and cosmetic industries due to their antioxidant properties. In this work, we studied the photophysical properties of SA and FA in different solvents and concentrations and their interactions with caffeine (CF), using ultraviolet-visible (UV-Vis), fluorescence spectroscopy and Fourier transform infrared (FTIR) spectroscopy. The findings show that the quantum yield, fluorescence lifetime, radiative decay rates, and non-radiative decay rates of SA and FA are influenced by the concentrations and solvent polarity. The interaction between SA and FA with CF was also studied using UV-Vis and fluorescence spectroscopy. The results indicate that the CF quenched the fluorescence intensity of SA and FA by static quenching due to the formation of a non-fluorescent complex. The van't Hoff equation suggests that the van der Waals forces and hydrogen bonds force were responsible for the interaction between SA and CF, as indicated by a negative change in enthalpy ( Δ H o  < 0) and a negative change in entropy ( Δ S o  < 0). On the other hand, the interaction between FA and CF was primarily controlled by electrostatic force, as indicated by a negative change in enthalpy ( Δ H o < 0) and a positive change in entropy ( Δ S o > 0). The negative change in Gibbs free energy ( Δ G o ) indicates that both compounds underwent a spontaneous binding process.

2.
J Fluoresc ; 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37505362

RESUMO

In this research, the ground (µg) and excited (µe) state dipole moments of metformin hydrochlorides were determined using Lippert-Mataga, Bakhshiev's, Kawski-Chamma-Viallet, and Reichardt models from fluorescence emission and UV-Vis absorption spectra in various solvents. From solvatochromic effects the calculated excited (µe ) dipole moment of metformin hydrochloride were, 8.55 D, 8.34 D, 6.08 D, and 6.40 D using the Lippert-Mataga, Bakhshiev's, Kawski-Chamma-Viallet and Reichardt models respectively. The results also indicated that the dipole moment at the ground state is smaller than the excited state. This is due to solvent polarity having a stronger effect on fluorescence emission than absorption spectra. Similarly, from density functional theory, the calculated ground and excited states dipole moments of metformin hydrochloride using (DFT-B3LYP- 3-21+G*(µg = 10.02 D and µe = 11.94 D), DFT-B3LYP- 6-31+G (d, p) (µg = 8.44 D and µe = 10.87 D), and DFT-B3LYP- 6-311+G (d, p) (µg = 8.24 D and µe = 18.74 D)) analyzed by Gaussian 09W. From the optimized geometry of the molecule, the HOMO-LUMO energy band gap of metformin hydrochloride were computed using DFT [DFT-B3LYP- 3-21+G*(5.51 eV), DFT-B3LYP- 6-31+G (d, p) (5.66 eV), and DFT-B3LYP- 6-311+G (d, p) (5.70 eV)] respectively.

3.
Food Sci Nutr ; 8(9): 4757-4762, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32994937

RESUMO

In this research, the application of the first order derivative spectra was employed to determine the levels of caffeine (CAF) and chlorogenic acids (CGA) in defective (immature, black, and sour) and nondefective coffee beans without using extraction or background correction techniques. The extreme points of first order derivate spectra of these compounds were at the wavelength of 260 and 292 nm enable to quantify the contents of CAF and CGA, respectively. The level of CAF and CGA in coffee beans determined by this method is ranged from 1.2 ± 0.12-1.46 ± 0.47% and 4.04 ± 0.44-4.43 ± 0.43%, respectively. The study results also indicated total contents of CAF and CGA levels discriminate the defective and nondefective coffee beans with higher CAF and CGA contents being observed in defective coffee beans. As the method is extremely rapid, easy, and inexpensive and also requires minimal sample preparation for the quantification of CAF and CGA contents in coffee, it could be a valuable quality control technique.

4.
Luminescence ; 31(3): 654-9, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27037967

RESUMO

The binding of ZnO nanoparticles (NPs) and caffeic acid (CFA) was investigated using fluorescence quenching, UV/vis absorption spectrscopy, Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM) and dynamic light scattering (DLS) at different temperatures. The study results indicated fluorescence quenching between ZnO NPs and CFA rationalized in terms of a static quenching mechanism or the formation of non-fluorescent CFA-ZnO. From fluorescence quenching spectral analysis, the binding constant (K(a)), number of binding sites (n) and thermodynamic properties were determined. Values of the quenching (K(SV)) and binding (K(a)) constants decrease with increasing temperature and the number of binding sites n = 2. The thermodynamic parameters determined using Van't Hoff equation indicated that binding occurs spontaneously involving the hydrogen bond, and van der Waal's forces played a major role in the reaction of ZnO NPs with CFA. The FTIR, TEM and DLS measurements also indicated differences in the structure, morphology and size of CFA, ZnO NPs and their corresponding CFA-ZnO.


Assuntos
Ácidos Cafeicos/química , Nanopartículas/química , Óxido de Zinco/química , Sítios de Ligação , Fluorescência , Termodinâmica
5.
Luminescence ; 31(2): 565-572, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26934864

RESUMO

The interactions of caffeine (CF) with chlorogenic acid (CGA) and caffeic acid (CFA) were investigated by fluorescence quenching, UV/vis and Fourier transform infrared (FTIR) spectroscopic techniques. The results of the study indicated that the fluorescence quenching between caffeine and hydroxycinnamic acids could be rationalized in terms of static quenching or the formation of non-fluorescent CF-CFA and CF-CGA complexes. From fluorescence quenching spectral analysis, the quenching constant (KSV), quenching rate constant (kq), number of binding sites (n), thermodynamic properties and conformational changes of the interaction were determined. The quenching constants (KSV) between CF and CGA, CFA are 1.84 × 10(4) and 1.04 × 10(4) L/mol at 298 K and their binding site n is ~ 1. Thermodynamic parameters determined using the Van't Hoff equation indicated that hydrogen bonds and van der Waal's forces have a major role in the reaction of caffeine with caffeic acid and chlorogenic acid. The 3D fluorescence, UV/vis and FTIR spectra also showed that the binding of CF with CFA and CGA induces conformational changes in CFA and CGA.


Assuntos
Ácidos Cafeicos/química , Cafeína/química , Ácido Clorogênico/química , Fluorescência , Sítios de Ligação , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier
6.
Luminescence ; 31(1): 118-26, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25991491

RESUMO

The effects of solvent polarity on absorption and fluorescence spectra of biologically active compounds (chlorogenic acid (CGA) and caffeic acids (CA)) have been investigated. In both spectra pronounced solvatochromic effects were observed with shift of emission peaks larger than the corresponding UV-vis electronic absorption spectra. From solvatochromic theory the ground and excited-state dipole moments were determined experimentally and theoretically. The differences between the excited and ground state dipole moment determined by Bakhshiev, Kawski-Chamma-Viallet and Reichardt equations are quite similar. The ground and excited-state dipole moments were determined by theoretical quantum chemical calculation using density function theory (DFT) method (Gaussian 09) and were also similar to the experimental results. The HOMO-LUMO energy band gaps for CGA and CFA were calculated and found to be 4.1119 and 1.8732 eV respectively. The results also indicated the CGA molecule is more stable than that of CFA. It was also observed that in both compounds the excited state possesses a higher dipole moment than that of the ground state. This confirms that the excited state of the hydroxycinnamic compounds is more polarized than that of the ground state and therefore is more sensitive to the solvent.


Assuntos
Ácidos Cafeicos/química , Ácido Clorogênico/química , Solventes/química , Estrutura Molecular , Teoria Quântica , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...