Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Nematol ; 532021.
Artigo em Inglês | MEDLINE | ID: mdl-34957410

RESUMO

Entomopathogenic nematodes (EPN) are excellent biocontrol agents against various insect pests. Novel biotechnological approaches can enhance their utility against insects above-ground, opening a new venue for selecting superior EPN against certain insects. We hypothesize that different populations of the same species but from different origins (habitat, ecoregion) will differ in their virulence. This study aimed to evaluate the virulence of various EPN populations against two pests of worldwide incidence and damage to high value crops: Frankliniella occidentalis (Thysanoptera: Thripidae) and Tuta absoluta (Lepidoptera: Gelechiidae). We tested 10 EPN populations belonging to three EPN species: Heterorhabditis bacteriophora (Koppert, MG-618b, AM-203, RM-102), Steinernema feltiae (Koppert, RS-5, AM-25, RM-107), and Steinernema carpocapsae (Koppert, MG-596a). Each EPN population was tested at two concentrations. Frankliniella occidentalis was tested at 160 and 80 IJs/cm2 and T. absoluta at 21 and 4 IJs/cm2. Control treatments followed the same experimental procedure but only adding distilled water. Overall, whenever different, higher IJs concentration resulted in lower adult emergence, higher larval mortality, and shorter time to kill the insects. Considering the low concentration, S. feltiae provided the best results for both insects and instars investigated, while H. bacteriophora and S. carpocapsae required a high concentration to reach similar or slightly better results. Differences among populations of each of the species were detected, but only the native populations of H. bacteriophora populations showed consistently higher control values against both insects/instar compared with the commercial one. Differences among S. feltiae and S. carpocapsae populations depended on the IJs concentration, insect, and instar. We consider S. feltiae a very promising species for their application against F. occidentalis and T. absoluta, with the Koppert population as the most consistent among the populations tested. Specific EPN-populations of S. carpocapsae and H. bacteriophora were good candidates against certain instar/insects at high concentrations. This study emphasized the importance of intraspecific variability for EPN virulence.

2.
Pest Manag Sci ; 67(10): 1237-44, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21495158

RESUMO

BACKGROUND: Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) and Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) are among the most serious pests of sweet peppers in greenhouses. Chemical control is difficult because of their high reproductive rates and insecticide resistance, and seasonal inoculative releases of Orius laevigatus (Fieber) and Amblyseius swirskii (Athias-Henriot) are commonly used to reduce their populations. As chemical treatments are often needed in the crop against other pests, the side effects of methoxyfenozide (an insect growth regulator against lepidopteran pests) and flonicamid (a selective feeding inhibitor against sucking insects) were studied in both beneficial organisms in a commercial greenhouse. RESULTS: Orius laevigatus and A. swirskii were released at commercial rates (4-5 and 100 m(-2) ), and a strong establishment and a very homogeneous distribution were reached. One pesticide treatment with the maximum field recommended concentration of methoxyfenozide and flonicamid (96 and 100 mg AI L(-1) ) was done when they were well established, and their population levels were not affected either immediately or up to 30 days after treatment. CONCLUSION: The results are indicative of no impact of methoxyfenozide and flonicamid on the two natural enemies in the field, and both can be considered as potential alternatives to be included in IPM programmes in sweet pepper.


Assuntos
Hemípteros , Hidrazinas , Inseticidas , Hormônios Juvenis , Niacinamida/análogos & derivados , Controle Biológico de Vetores , Tisanópteros , Animais , Capsicum/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA