Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 14(4)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38672476

RESUMO

The recent approval of formulations of the endogenous neurosteroid allopregnanolone (brexanolone) and the synthetic neuroactive steroid SAGE-217 (zuranolone) to treat postpartum depression (PPD) has encouraged further research to elucidate why these potent enhancers of GABAAR function are clinically effective in this condition. Dopaminergic projections from the ventral tegmental area (VTA) to the nucleus accumbens are associated with reward/motivation and brain imaging studies report that individuals with PPD show reduced activity of this pathway in response to reward and infant engagement. However, the influence of neurosteroids on GABA-ergic transmission in the nucleus accumbens has received limited attention. Here, we investigate, in the medium spiny neurons (MSNs) of the mouse nucleus accumbens core, the effect of allopregnanolone, SAGE-217 and other endogenous and synthetic steroids of interest on fast phasic and tonic inhibition mediated by synaptic (α1/2ßγ2) and extrasynaptic (α4ßδ) GABAARs, respectively. We present evidence suggesting the resident tonic current results from the spontaneous opening of δ-GABAARs, where the steroid-enhanced tonic current is GABA-dependent. Furthermore, we demonstrate local neurosteroid synthesis in the accumbal slice preparation and reveal that GABA-ergic neurotransmission of MSNs is influenced by an endogenous neurosteroid tone. Given the dramatic fluctuations in allopregnanolone levels during pregnancy and postpartum, this neurosteroid-mediated local fine-tuning of GABAergic transmission in the MSNs will probably be perturbed.


Assuntos
Neuroesteroides , Núcleo Accumbens , Pregnanolona , Receptores de GABA-A , Animais , Núcleo Accumbens/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Camundongos , Receptores de GABA-A/metabolismo , Neuroesteroides/metabolismo , Pregnanolona/farmacologia , Pregnanolona/metabolismo , Sinapses/metabolismo , Sinapses/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Feminino , Masculino , Transmissão Sináptica/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/efeitos dos fármacos
2.
Int Rev Neurobiol ; 175: 241-276, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38555118

RESUMO

The health risks and harm associated with regular alcohol consumption are well documented. In a recent WHO statement published in The Lancet Public Health alcohol consumption has been estimated to contribute worldwide to 3 million deaths in 2016 while also being responsible for 5·1% of the global burden of disease and injury. The total elimination of alcohol consumption, which has been long imbedded in human culture and society, is not practical and prohibition policies have proved historically ineffective. However, valuable strategies to reduce alcohol harms are already available and improved alternative approaches are currently being developed. Here, we will review and discuss recent advances on two main types of approaches, that is nutritional interventions and functional alcohol alternatives.


Assuntos
Consumo de Bebidas Alcoólicas , Humanos , Consumo de Bebidas Alcoólicas/efeitos adversos , Consumo de Bebidas Alcoólicas/prevenção & controle
3.
eNeuro ; 10(8)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37553242

RESUMO

Extrasynaptic GABAA receptors (GABAARs) composed of α4, ß, and δ subunits mediate GABAergic tonic inhibition and are potential molecular targets in the modulation of behavioral responses to natural and drug rewards. These GABAARs are highly expressed within the nucleus accumbens (NAc), where they influence the excitability of the medium spiny neurons. Here, we explore their role in modulating behavioral responses to food-conditioned cues and the behavior-potentiating effects of cocaine. α4-Subunit constitutive knock-out mice (α4-/-) showed higher rates of instrumental responding for reward-paired stimuli in a test of conditioned reinforcement (CRf). A similar effect was seen following viral knockdown of GABAAR α4 subunits within the NAc. Local infusion of the α4ßδ-GABAAR-preferring agonist THIP (4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol; Gaboxadol) into the NAc had no effect on responding when given alone but reduced cocaine potentiation of responding for conditioned reinforcers in wild-type, but not α4-/- mice. Finally, specific deletion of α4-subunits from dopamine D2, but not D1, receptor-expressing neurons (DRD2 and DRD1 neurons), mimicked the phenotype of the constitutive knockout, potentiating CRf responding, and blocking intra-accumbal THIP attenuation of cocaine-potentiated CRf responding. These data demonstrate that α4-GABAAR-mediated inhibition of DRD2 neurons reduces instrumental responding for a conditioned reinforcer and its potentiation by cocaine and emphasize the importance of GABAergic signaling within the NAc in mediating the effects of cocaine.


Assuntos
Cocaína , Camundongos , Animais , Cocaína/farmacologia , Núcleo Accumbens , Receptores de GABA-A , Neurônios , Camundongos Knockout , Ácido gama-Aminobutírico/farmacologia , Receptores de Dopamina D2
4.
Nutrients ; 14(18)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36145137

RESUMO

The consumption of alcohol is associated with well-known health harms and many governments worldwide are actively engaged in devising approaches to reduce them. To this end, a common proposed strategy aims at reducing alcohol consumption. This approach has led to the development of non-alcoholic drinks, which have been especially welcome by younger, wealthier, health-conscious consumers, who have been turning away from alcohol to look toward alternatives. However, a drawback of non-alcoholic drinks is that they do not facilitate social interaction in the way alcohol does, which is the main reason behind social drinking. Therefore, an alternative approach is to develop functional drinks that do not use alcohol yet mimic the positive, pro-social effects of alcohol without the associated harms. This article will discuss (1) current knowledge of how alcohol mediates its effects in the brain, both the desirable, e.g., antistress to facilitate social interactions, and the harmful ones, with a specific focus on the pivotal role played by the gamma-aminobutyric acid (GABA) neurotransmitter system and (2) how this knowledge can be exploited to develop functional safe alternatives to alcohol using either molecules already existing in nature or synthetic ones. This discussion will be complemented by an analysis of the regulatory challenges associated with the novel endeavour of bringing safe, functional alternatives to alcohol from the bench to bars.


Assuntos
Consumo de Bebidas Alcoólicas , Etanol , Consumo de Bebidas Alcoólicas/efeitos adversos , Encéfalo , Etanol/farmacologia , Ácido gama-Aminobutírico
5.
Cell Rep ; 38(13): 110600, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35354026

RESUMO

Several mental illnesses, characterized by aberrant stress reactivity, often arise after early-life adversity (ELA). However, it is unclear how ELA affects stress-related brain circuit maturation, provoking these enduring vulnerabilities. We find that ELA increases functional excitatory synapses onto stress-sensitive hypothalamic corticotropin-releasing hormone (CRH)-expressing neurons, resulting from disrupted developmental synapse pruning by adjacent microglia. Microglial process dynamics and synaptic element engulfment were attenuated in ELA mice, associated with deficient signaling of the microglial phagocytic receptor MerTK. Accordingly, selective chronic chemogenetic activation of ELA microglia increased microglial process dynamics and reduced excitatory synapse density to control levels. Notably, selective early-life activation of ELA microglia normalized adult acute and chronic stress responses, including stress-induced hormone secretion and behavioral threat responses, as well as chronic adrenal hypertrophy of ELA mice. Thus, microglial actions during development are powerful contributors to mechanisms by which ELA sculpts the connectivity of stress-regulating neurons, promoting vulnerability to stress and stress-related mental illnesses.


Assuntos
Hormônio Liberador da Corticotropina , Células-Tronco Neurais , Animais , Camundongos , Microglia/fisiologia , Neurônios/fisiologia , Sinapses/fisiologia
6.
J Neuroendocrinol ; 34(2): e13045, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34644812

RESUMO

Studies in the 1980s revealed endogenous metabolites of progesterone and deoxycorticosterone to be potent, efficacious, positive allosteric modulators (PAMs) of the GABAA receptor (GABAA R). The discovery that such steroids are locally synthesised in the central nervous system (CNS) promoted the thesis that neural inhibition in the CNS may be "fine-tuned" by these neurosteroids to influence behaviour. In preclinical studies, these neurosteroids exhibited anxiolytic, anticonvulsant, analgesic and sedative properties and, at relatively high doses, induced a state of general anaesthesia, a profile consistent with their interaction with GABAA Rs. However, realising the therapeutic potential of either endogenous neurosteroids or synthetic "neuroactive" steroids has proven challenging. Recent approval by the Food and Drug Administration of the use of allopregnanolone (brexanolone) to treat postpartum depression has rekindled enthusiasm for exploring their potential as new medicines. Although neurosteroids are selective for GABAA Rs, they exhibit little or no selectivity across the many GABAA R subtypes. Nevertheless, a relatively minor population of receptors incorporating the δ-subunit (δ-GABAA Rs) appears to be an important contributor to their behavioural effects. Here, we consider how neurosteroids acting upon GABAA Rs influence neuronal signalling, as well as how such effects may acutely and persistently influence behaviour, and explore the case for developing selective PAMs of δ-GABAA R subtypes for the treatment of psychiatric disorders.


Assuntos
Neuroesteroides , Sistema Nervoso Central/metabolismo , Feminino , Humanos , Receptores de GABA-A/metabolismo , Transmissão Sináptica/fisiologia , Ácido gama-Aminobutírico/fisiologia
7.
IUPHAR BPS Guide Pharm CITE ; 2021(3)2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-35005623

RESUMO

The GABAA receptor is a ligand-gated ion channel of the Cys-loop family that includes the nicotinic acetylcholine, 5-HT3 and strychnine-sensitive glycine receptors. GABAA receptor-mediated inhibition within the CNS occurs by fast synaptic transmission, sustained tonic inhibition and temporally intermediate events that have been termed 'GABAA, slow' [45]. GABAA receptors exist as pentamers of 4TM subunits that form an intrinsic anion selective channel. Sequences of six α, three ß, three γ, one δ, three ρ, one ε, one π and one θ GABAA receptor subunits have been reported in mammals [278, 235, 236, 283]. The π-subunit is restricted to reproductive tissue. Alternatively spliced versions of many subunits exist (e.g. α4- and α6- (both not functional) α5-, ß2-, ß3- and γ2), along with RNA editing of the α3 subunit [71]. The three ρ-subunits, (ρ1-3) function as either homo- or hetero-oligomeric assemblies [359, 50]. Receptors formed from ρ-subunits, because of their distinctive pharmacology that includes insensitivity to bicuculline, benzodiazepines and barbiturates, have sometimes been termed GABAC receptors [359], but they are classified as GABA A receptors by NC-IUPHAR on the basis of structural and functional criteria [16, 235, 236]. Many GABAA receptor subtypes contain α-, ß- and γ-subunits with the likely stoichiometry 2α.2ß.1γ [168, 235]. It is thought that the majority of GABAA receptors harbour a single type of α- and ß - subunit variant. The α1ß2γ2 hetero-oligomer constitutes the largest population of GABAA receptors in the CNS, followed by the α2ß3γ2 and α3ß3γ2 isoforms. Receptors that incorporate the α4- α5-or α 6-subunit, or the ß1-, γ1-, γ3-, δ-, ε- and θ-subunits, are less numerous, but they may nonetheless serve important functions. For example, extrasynaptically located receptors that contain α6- and δ-subunits in cerebellar granule cells, or an α4- and δ-subunit in dentate gyrus granule cells and thalamic neurones, mediate a tonic current that is important for neuronal excitability in response to ambient concentrations of GABA [209, 272, 83, 19, 288]. GABA binding occurs at the ß+/α- subunit interface and the homologous γ+/α- subunits interface creates the benzodiazepine site. A second site for benzodiazepine binding has recently been postulated to occur at the α+/ß- interface ([254]; reviewed by [282]). The particular α-and γ-subunit isoforms exhibit marked effects on recognition and/or efficacy at the benzodiazepine site. Thus, receptors incorporating either α4- or α6-subunits are not recognised by 'classical' benzodiazepines, such as flunitrazepam (but see [356]). The trafficking, cell surface expression, internalisation and function of GABAA receptors and their subunits are discussed in detail in several recent reviews [52, 140, 188, 316] but one point worthy of note is that receptors incorporating the γ2 subunit (except when associated with α5) cluster at the postsynaptic membrane (but may distribute dynamically between synaptic and extrasynaptic locations), whereas as those incorporating the δ subunit appear to be exclusively extrasynaptic. NC-IUPHAR [16, 235, 3, 2] class the GABAA receptors according to their subunit structure, pharmacology and receptor function. Currently, eleven native GABAA receptors are classed as conclusively identified (i.e., α1ß2γ2, α1ßγ2, α3ßγ2, α4ßγ2, α4ß2δ, α4ß3δ, α5ßγ2, α6ßγ2, α6ß2δ, α6ß3δ and ρ) with further receptor isoforms occurring with high probability, or only tentatively [235, 236]. It is beyond the scope of this Guide to discuss the pharmacology of individual GABAA receptor isoforms in detail; such information can be gleaned in the reviews [16, 95, 168, 173, 143, 278, 216, 235, 236] and [9, 10]. Agents that discriminate between α-subunit isoforms are noted in the table and additional agents that demonstrate selectivity between receptor isoforms, for example via ß-subunit selectivity, are indicated in the text below. The distinctive agonist and antagonist pharmacology of ρ receptors is summarised in the table and additional aspects are reviewed in [359, 50, 145, 223]. Several high-resolution cryo-electron microscopy structures have been described in which the full-length human α1ß3γ2L GABAA receptor in lipid nanodiscs is bound to the channel-blocker picrotoxin, the competitive antagonist bicuculline, the agonist GABA (γ-aminobutyric acid), and the classical benzodiazepines alprazolam and diazepam [198].

8.
Neurobiol Stress ; 12: 100207, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32435660

RESUMO

In the 1980s particular endogenous metabolites of progesterone and of deoxycorticosterone were revealed to be potent, efficacious, positive allosteric modulators (PAMs) of the GABAA receptor (GABAAR). These reports were followed by the discovery that such steroids may be synthesised not only in peripheral endocrine glands, but locally in the central nervous system (CNS), to potentially act as paracrine, or autocrine "neurosteroid" messengers, thereby fine tuning neuronal inhibition. These discoveries triggered enthusiasm to elucidate the physiological role of such neurosteroids and explore whether their levels may be perturbed in particular psychiatric and neurological disorders. In preclinical studies the GABAAR-active steroids were shown to exhibit anxiolytic, anticonvulsant, analgesic and sedative properties and at relatively high doses to induce a state of general anaesthesia. Collectively, these findings encouraged efforts to investigate the therapeutic potential of neurosteroids and related synthetic analogues. However, following over 30 years of investigation, realising their possible medical potential has proved challenging. The recent FDA approval for the natural neurosteroid allopregnanolone (brexanolone) to treat postpartum depression (PPD) should trigger renewed enthusiasm for neurosteroid research. Here we focus on the influence of neuroactive steroids on GABA-ergic signalling and on the challenges faced in developing such steroids as anaesthetics, sedatives, analgesics, anticonvulsants, antidepressants and as treatments for neurodegenerative disorders.

9.
Behav Pharmacol ; 30(2 and 3-Spec Issue): 272-281, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30724801

RESUMO

Early-life stress (ELS) is known to exert long-term effects on brain function, with resulting deleterious consequences for several aspects of mental health, including the development of addiction to drugs of abuse. One potential mechanism in humans is suggested by findings that ELS interacts with polymorphisms of the GABRA2 gene, encoding α2 subunits of GABAA receptors, to increase the risk for both post-traumatic stress disorder and vulnerability to cocaine addiction. We used a mouse model, in which the amount of material for nest building was reduced during early postnatal life, to study interactions between ELS and expression of α2-containing GABAA receptors in influencing cocaine-related behaviour. Breeding of parents heterozygous for a deletion of α2 resulted in litters containing homozygous knockout (α2), heterozygous knockout (α2) and wild-type (α2) offspring. Following the ELS procedure, the mice were allowed to develop to adulthood before being tested for the acute effect of cocaine on locomotor stimulation, behavioural sensitization to repeated cocaine and to cocaine-conditioned activity. Exposure to ELS resulted in increased acute locomotor stimulant effects of cocaine across all genotypes, with the most marked effects in α2 mice (which also showed increased activity following vehicle). Repeated cocaine administration to nonstressed mice resulted in sensitization in α2 and α2 mice, but, in keeping with previous findings, not in α2 mice. Previous exposure to ELS reduced sensitization in α2 mice, albeit not significantly, and abolished sensitization in α2 mice. Conditioned activity was elevated following ELS in all animals, independently of genotype. Thus, while the enhanced acute effects of cocaine following ELS being most marked in α2 mice suggests a function of α2-containing GABAA receptors in protecting against stress, the interaction between ELS and genotype in influencing sensitization may be more in keeping with ELS reducing expression of α2-containing GABAA receptors. The ability of ELS to increase cocaine-conditioned locomotor activity appears to be independent of α2-containing GABAA receptors.


Assuntos
Cocaína/farmacologia , Receptores de GABA-A/efeitos dos fármacos , Estresse Psicológico/fisiopatologia , Animais , Transtornos Relacionados ao Uso de Cocaína/fisiopatologia , Aprendizagem/efeitos dos fármacos , Locomoção/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de GABA-A/metabolismo
10.
Neuropharmacology ; 141: 98-112, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30138693

RESUMO

Haplotypes of the Gabra2 gene encoding the α2-subunit of the GABAA receptor (GABAAR) are associated with drug abuse, suggesting that α2-GABAARs may play an important role in the circuitry underlying drug misuse. The genetic association of Gabra2 haplotypes with cocaine addiction appears to be evident primarily in individuals who had experienced childhood trauma. Given this association of childhood trauma, cocaine abuse and the Gabra2 haplotypes, we have explored in a mouse model of early life adversity (ELA) whether such events influence the behavioral effects of cocaine and if, as suggested by the human studies, α2-GABAARs in the nucleus accumbens (NAc) are involved in these perturbed behaviors. In adult mice prior ELA caused a selective decrease of accumbal α2-subunit mRNA, resulting in a selective decrease in the number and size of the α2-subunit (but not the α1-subunit) immunoreactive clusters in NAc core medium spiny neurons (MSNs). Functionally, in adult MSNs ELA decreased the amplitude and frequency of GABAAR-mediated miniature inhibitory postsynaptic currents (mIPSCs), a profile similar to that of α2 "knock-out" (α2-/-) mice. Behaviourally, adult male ELA and α2-/- mice exhibited an enhanced locomotor response to acute cocaine and blunted sensitisation upon repeated cocaine administration, when compared to their appropriate controls. Collectively, these findings reveal a neurobiological mechanism which may relate to the clinical observation that early trauma increases the risk for substance abuse disorder (SAD) in individuals harbouring haplotypic variations in the Gabra2 gene.


Assuntos
Cocaína/farmacologia , Locomoção/efeitos dos fármacos , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/fisiologia , Receptores de GABA-A/biossíntese , Animais , Sensibilização do Sistema Nervoso Central/fisiologia , Feminino , Potenciais Pós-Sinápticos Inibidores/fisiologia , Masculino , Camundongos , Camundongos Knockout , Potenciais Pós-Sinápticos em Miniatura/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia , Núcleo Accumbens/metabolismo , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/fisiologia
11.
Anal Chem ; 90(8): 5247-5255, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29561593

RESUMO

Neurosteroids are brain-derived steroids, capable of rapidly modulating neuronal excitability in a nongenomic manner. Dysregulation of their synthesis or metabolism has been implicated in many pathological conditions. Here, we describe an isotope dilution based targeted and nontargeted (ID-TNT) profiling of carbonyl neurosteroids/steroids. The method combines stable isotope dilution, hydroxylamine derivatization, high-resolution MS scanning, and data-dependent MS/MS analysis, allowing absolute quantification of pregnenolone, progesterone, 5α-dihydroprogesterone, 3α,5α-tetrahydroprogesterone, and 3ß,5α-tetrahydroprogesterone, and relative quantification of other carbonyl containing steroids. The utility and validity of this approach was tested in an acute stress mouse model and via pharmacological manipulation of the steroid metabolic pathway with finasteride. We report that brain levels of 3α,5α-tetrahydroprogesterone, a potent enhancer of GABAA receptor (GABAAR-mediated inhibitory function, from control mice is in the 5-40 pmol/g range, a value greater than previously reported. The approach allows the use of data from targeted analysis to guide the normalization strategy for nontargeted data. Furthermore, novel findings, including a striking increase of brain pregnenolone following finasteride administration were discovered in this study. Collectively, our results indicate that this approach has distinct advantages for examining targeted and nontargeted neurosteroid/steroid pathways in animal models and could facilitate a better understanding of the physiological and pathological roles of neurosteroids as modulators of brain excitability.

12.
Neuropharmacology ; 125: 353-364, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28807671

RESUMO

In the mammalian central nervous system (CNS) GABAA receptors (GABAARs) mediate neuronal inhibition and are important therapeutic targets. GABAARs are composed of 5 subunits, drawn from 19 proteins, underpinning expression of 20-30 GABAAR subtypes. In the CNS these isoforms are heterogeneously expressed and exhibit distinct physiological and pharmacological properties. We report the discovery of S44819, a novel tricyclic oxazolo-2,3-benzodiazepine-derivative, that selectively inhibits α5-subunit-containing GABAARs (α5-GABAARs). Current α5-GABAAR inhibitors bind to the "benzodiazepine site". However, in HEK293 cells expressing recombinant α5-GABAARs, S44819 had no effect on 3H-flumazenil binding, but displaced the GABAAR agonist 3H-muscimol and competitively inhibited the GABA-induced responses. Importantly, we reveal that the α5-subunit selectivity is uniquely governed by amino acid residues within the α-subunit F-loop, a region associated with GABA binding. In mouse hippocampal CA1 neurons, S44819 enhanced long-term potentiation (LTP), blocked a tonic current mediated by extrasynaptic α5-GABAARs, but had no effect on synaptic GABAARs. In mouse thalamic neurons, S44819 had no effect on the tonic current mediated by δ-GABAARs, or on synaptic (α1ß2γ2) GABAARs. In rats, S44819 enhanced object recognition memory and reversed scopolamine-induced impairment of working memory in the eight-arm radial maze. In conclusion, S44819 is a first in class compound that uniquely acts as a potent, competitive, selective antagonist of recombinant and native α5-GABAARs. Consequently, S44819 enhances hippocampal synaptic plasticity and exhibits pro-cognitive efficacy. Given this profile, S44819 may improve cognitive function in neurodegenerative disorders and facilitate post-stroke recovery.


Assuntos
Benzodiazepinas/farmacologia , Antagonistas de Receptores de GABA-A/farmacologia , Nootrópicos/farmacologia , Oxazóis/farmacologia , Receptores de GABA-A/metabolismo , Animais , Ligação Competitiva , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Feminino , Flumazenil/farmacologia , Agonistas de Receptores de GABA-A/farmacologia , Células HEK293 , Humanos , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/fisiologia , Masculino , Memória/efeitos dos fármacos , Memória/fisiologia , Camundongos Endogâmicos C57BL , Muscimol/farmacologia , Inibição Neural/efeitos dos fármacos , Inibição Neural/fisiologia , Ratos Sprague-Dawley , Técnicas de Cultura de Tecidos , Ácido gama-Aminobutírico/farmacologia
13.
Neuropharmacology ; 103: 163-73, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26626485

RESUMO

As neuronal development progresses, GABAergic synaptic transmission undergoes a defined program of reconfiguration. For example, GABAA receptor (GABAAR)-mediated synaptic currents, (miniature inhibitory postsynaptic currents; mIPSCs), which initially exhibit a relatively slow decay phase, become progressively reduced in duration, thereby supporting the temporal resolution required for mature network activity. Here we report that during postnatal development of cortical layer 2/3 pyramidal neurons, GABAAR-mediated phasic inhibition is influenced by a resident neurosteroid tone, which wanes in the second postnatal week, resulting in the brief phasic events characteristic of mature neuronal signalling. Treatment of cortical slices with the immediate precursor of 5α-pregnan-3α-ol-20-one (5α3α), the GABAAR-inactive 5α-dihydroprogesterone, (5α-DHP), greatly prolonged the mIPSCs of P20 pyramidal neurons, demonstrating these more mature neurons retain the capacity to synthesize GABAAR-active neurosteroids, but now lack the endogenous steroid substrate. Previously, such developmental plasticity of phasic inhibition was ascribed to the expression of synaptic GABAARs incorporating the α1 subunit. However, the duration of mIPSCs recorded from L2/3 cortical neurons derived from α1 subunit deleted mice, were similarly under the developmental influence of a neurosteroid tone. In addition to principal cells, synaptic GABAARs of L2/3 interneurons were modulated by native neurosteroids in a development-dependent manner. In summary, local neurosteroids influence synaptic transmission during a crucial period of cortical neurodevelopment, findings which may be of importance for establishing normal network connectivity.


Assuntos
Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/fisiologia , Potenciais Pós-Sinápticos em Miniatura , Neurotransmissores/farmacologia , Células Piramidais/fisiologia , Transmissão Sináptica , Animais , Córtex Cerebral/efeitos dos fármacos , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Potenciais Pós-Sinápticos em Miniatura/efeitos dos fármacos , Células Piramidais/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos
14.
Eur J Pharmacol ; 764: 497-507, 2015 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-26169564

RESUMO

Novel 2,3-benzodiazepine and related isoquinoline derivatives, substituted at position 1 with a 2-benzothiophenyl moiety, were synthesized to produce compounds that potently inhibited the action of GABA on heterologously expressed GABAA receptors containing the alpha 5 subunit (GABAA α5), with no apparent affinity for the benzodiazepine site. Substitutions of the benzothiophene moiety at position 4 led to compounds with drug-like properties that were putative inhibitors of extra-synaptic GABAA α5 receptors and had substantial blood-brain barrier permeability. Initial characterization in vivo showed that 8-methyl-5-[4-(trifluoromethyl)-1-benzothiophen-2-yl]-1,9-dihydro-2H-[1,3]oxazolo[4,5-h][2,3]benzodiazepin-2-one was devoid of sedative, pro-convulsive or motor side-effects, and enhanced the performance of rats in the object recognition test. In summary, we have discovered a first-in-class GABA-site inhibitor of extra-synaptic GABAA α5 receptors that has promising drug-like properties and warrants further development.


Assuntos
Anticonvulsivantes/farmacologia , Benzodiazepinas/farmacologia , Antagonistas de Receptores de GABA-A/farmacologia , Nootrópicos/farmacologia , Receptores de GABA-A/efeitos dos fármacos , Animais , Anticonvulsivantes/síntese química , Anticonvulsivantes/metabolismo , Anticonvulsivantes/toxicidade , Comportamento Animal/efeitos dos fármacos , Benzodiazepinas/síntese química , Benzodiazepinas/metabolismo , Benzodiazepinas/toxicidade , Barreira Hematoencefálica/metabolismo , Permeabilidade Capilar , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Antagonistas de Receptores de GABA-A/síntese química , Antagonistas de Receptores de GABA-A/metabolismo , Antagonistas de Receptores de GABA-A/toxicidade , Células HEK293 , Humanos , Masculino , Camundongos , Estrutura Molecular , Atividade Motora/efeitos dos fármacos , Nootrópicos/síntese química , Nootrópicos/metabolismo , Nootrópicos/toxicidade , Pentilenotetrazol , Ratos Sprague-Dawley , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Reconhecimento Psicológico/efeitos dos fármacos , Convulsões/induzido quimicamente , Convulsões/prevenção & controle , Relação Estrutura-Atividade , Xenopus laevis
15.
J Physiol ; 593(1): 267-84, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25556800

RESUMO

KEY POINTS: During neuronal development synaptic events mediated by GABAA receptors are progressively reduced in their duration, allowing for rapid and precise network function. Here we focused on ventrobasal thalamocortical neurones, which contribute to behaviourally relevant oscillations between thalamus and cortex. We demonstrate that the developmental decrease in the duration of inhibitory phasic events results predominantly from a precisely timed loss of locally produced neurosteroids, which act as positive allosteric modulators of the GABAA receptor. The mature thalamus retains the ability to synthesise neurosteroids, thus preserving the capacity to enhance both phasic and tonic inhibition, mediated by synaptic and extrasynaptic GABAA receptors, respectively, in physiological and pathophysiological scenarios associated with perturbed neurosteroid levels. Our data establish a potent, endogenous mechanism to locally regulate the GABAA receptor function and thereby influence thalamocortical activity. During brain development the duration of miniature inhibitory postsynaptic currents (mIPSCs) mediated by GABAA receptors (GABAA Rs) progressively reduces, to accommodate the temporal demands required for precise network activity. Conventionally, this synaptic plasticity results from GABAA R subunit reorganisation. In particular, in certain developing neurones synaptic α2-GABAA Rs are replaced by α1-GABAA Rs. However, in thalamocortical neurones of the mouse ventrobasal (VB) thalamus, the major alteration to mIPSC kinetics occurs on postnatal (P) day 10, some days prior to the GABAA R isoform change. Here, whole-cell voltage-clamp recordings from VB neurones of mouse thalamic slices revealed that early in postnatal development (P7-P8), the mIPSC duration is prolonged by local neurosteroids acting in a paracrine or autocrine manner to enhance GABAA R function. However, by P10, this neurosteroid 'tone' rapidly dissipates, thereby producing brief mIPSCs. This plasticity results from a lack of steroid substrate as pre-treatment of mature thalamic slices (P20-24) with the GABAA R-inactive precursor 5α-dihydroprogesterone (5α-DHP) resulted in markedly prolonged mIPSCs and a greatly enhanced tonic conductance, mediated by synaptic and extrasynaptic GABAA Rs, respectively. In summary, endogenous neurosteroids profoundly influence GABAergic neurotransmission in developing VB neurones and govern a transition from slow to fast phasic synaptic events. Furthermore, the retained capacity for steroidogenesis in the mature thalamus raises the prospect that certain physiological or pathophysiological conditions may trigger neurosteroid neosynthesis, thereby providing a local mechanism for fine-tuning neuronal excitability.


Assuntos
Neurônios/fisiologia , Receptores de GABA-A/fisiologia , Transmissão Sináptica/fisiologia , Tálamo/fisiologia , 3-alfa-Hidroxiesteroide Desidrogenase (B-Específica)/farmacologia , 5-alfa-Di-Hidroprogesterona/farmacologia , Envelhecimento/fisiologia , Animais , Técnicas In Vitro , Potenciais Pós-Sinápticos Inibidores , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pregnanolona/farmacologia , Receptores de GABA-A/genética , Ácido gama-Aminobutírico/fisiologia
16.
Cereb Cortex ; 25(9): 2440-55, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24646614

RESUMO

Cannabinoids are known to regulate inhibitory synaptic transmission via activation of presynaptic G protein-coupled cannabinoid CB1 receptors (CB1Rs). Additionally, recent studies suggest that cannabinoids can also directly interact with recombinant GABAA receptors (GABAARs), potentiating currents activated by micromolar concentrations of γ-aminobutyric acid (GABA). However, the impact of this direct interaction on GABAergic inhibition in central nervous system is unknown. Here we report that currents mediated by recombinant GABAARs activated by high (synaptic) concentrations of GABA as well as GABAergic inhibitory postsynaptic currents (IPSCs) at neocortical fast spiking (FS) interneuron to pyramidal neuron synapses are suppressed by exogenous and endogenous cannabinoids in a CB1R-independent manner. This IPSC suppression may account for disruption of inhibitory control of pyramidal neurons by FS interneurons. At FS interneuron to pyramidal neuron synapses, endocannabinoids induce synaptic low-pass filtering of GABAAR-mediated currents evoked by high-frequency stimulation. The CB1R-independent suppression of inhibition is synapse specific. It does not occur in CB1R containing hippocampal cholecystokinin-positive interneuron to pyramidal neuron synapses. Furthermore, in contrast to synaptic receptors, the activity of extrasynaptic GABAARs in neocortical pyramidal neurons is enhanced by cannabinoids in a CB1R-independent manner. Thus, cannabinoids directly interact differentially with synaptic and extrasynaptic GABAARs, providing a potent novel context-dependent mechanism for regulation of inhibition.


Assuntos
Canabinoides/metabolismo , Potenciais Pós-Sinápticos Inibidores/fisiologia , Inibição Neural/fisiologia , Receptores de GABA/metabolismo , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/genética , Animais , Animais Recém-Nascidos , Canabinoides/farmacologia , GABAérgicos/farmacologia , Hipocampo/citologia , Humanos , Técnicas In Vitro , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Inibição Neural/efeitos dos fármacos , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Receptor CB1 de Canabinoide/genética , Receptor CB1 de Canabinoide/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/genética , Transfecção
17.
Front Neuroendocrinol ; 36: 28-48, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24929099

RESUMO

Regulation of hypothalamic-pituitary-adrenocortical (HPA) axis activity by stress is a fundamental survival mechanism and HPA-dysfunction is implicated in psychiatric disorders. Adverse early life experiences, e.g. poor maternal care, negatively influence brain development and programs an abnormal stress response by encoding long-lasting molecular changes, which may extend to the next generation. How HPA-dysfunction leads to the development of affective disorders is complex, but may involve GABAA receptors (GABAARs), as they curtail stress-induced HPA axis activation. Of particular interest are endogenous neurosteroids that potently modulate the function of GABAARs and exhibit stress-protective properties. Importantly, neurosteroid levels rise rapidly during acute stress, are perturbed in chronic stress and are implicated in the behavioural changes associated with early-life adversity. We will appraise how GABAAR-active neurosteroids may impact on HPA axis development and the orchestration of the stress-evoked response. The significance of these actions will be discussed in the context of stress-associated mood disorders.


Assuntos
Sistema Hipotálamo-Hipofisário/metabolismo , Neurotransmissores/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Receptores de GABA-A/metabolismo , Estresse Psicológico/metabolismo , Humanos
18.
Brain Struct Funct ; 220(5): 2739-63, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24973971

RESUMO

The dorsal raphe nucleus (DRN) provides the major source of serotonin to the central nervous system (CNS) and modulates diverse neural functions including mood. Furthermore, DRN cellular networks are engaged in the stress-response at the CNS level allowing for adaptive behavioural responses, whilst stress-induced dysregulation of DRN and serotonin release is implicated in psychiatric disorders. Therefore, identifying the molecules regulating DRN activity is fundamental to understand DRN function in health and disease. GABAA receptors (GABAARs) allow for brain region, cell type and subcellular domain-specific GABA-mediated inhibitory currents and are thus key regulators of neuronal activity. Yet, the GABAAR subtypes expressed within the neurochemically diverse cell types of the mouse DRN are poorly described. In this study, immunohistochemistry and confocal microscopy revealed that all serotonergic neurons expressed immunoreactivity for the GABAAR alpha2 and 3 subunits, although the respective signals were co-localised to varying degrees with inhibitory synaptic marker proteins. Only a topographically located sub-population of serotonergic neurons exhibited GABAAR alpha1 subunit immunoreactivity. However, all GABAergic as well as non-GABAergic, non-serotonergic neurons within the DRN expressed GABAAR alpha1 subunit immunoreactivity. Intriguingly, immunoreactivity for the GABAAR gamma2 subunit was enriched on GABAergic rather than serotonergic neurons. Finally, repeated restraint stress increased the expression of the GABAAR alpha3 subunit at the mRNA and protein level. The study demonstrates the identity and location of distinct GABAAR subunits within the cellular networks of the mouse DRN and that stress impacts on the expression levels of particular subunits at the gene and protein level.


Assuntos
Núcleo Dorsal da Rafe/metabolismo , Neurônios GABAérgicos/metabolismo , Plasticidade Neuronal/fisiologia , Receptores de GABA-A/metabolismo , Neurônios Serotoninérgicos/metabolismo , Estresse Fisiológico/fisiologia , Animais , Camundongos , Serotonina/metabolismo
19.
J Neurosci ; 34(31): 10361-78, 2014 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-25080596

RESUMO

The enteric nervous system (ENS) provides the intrinsic neural control of the gastrointestinal tract (GIT) and regulates virtually all GI functions. Altered neuronal activity within the ENS underlies various GI disorders with stress being a key contributing factor. Thus, elucidating the expression and function of the neurotransmitter systems, which determine neuronal excitability within the ENS, such as the GABA-GABAA receptor (GABAAR) system, could reveal novel therapeutic targets for such GI disorders. Molecular and functionally diverse GABAARs modulate rapid GABAergic-mediated regulation of neuronal excitability throughout the nervous system. However, the cellular and subcellular GABAAR subunit expression patterns within neurochemically defined cellular circuits of the mouse ENS, together with the functional contribution of GABAAR subtypes to GI contractility remains to be determined. Immunohistochemical analyses revealed that immunoreactivity for the GABAAR gamma (γ) 2 and alphas (α) 1, 2, 3 subunits was located on somatodendritic surfaces of neurochemically distinct myenteric plexus neurons, while being on axonal compartments of submucosal plexus neurons. In contrast, immunoreactivity for the α4-5 subunits was only detected in myenteric plexus neurons. Furthermore, α-γ2 subunit immunoreactivity was located on non-neuronal interstitial cells of Cajal. In organ bath studies, GABAAR subtype-specific ligands had contrasting effects on the force and frequency of spontaneous colonic longitudinal smooth muscle contractions. Finally, enhancement of γ2-GABAAR function with alprazolam reversed the stress-induced increase in the force of spontaneous colonic contractions. The study demonstrates the molecular and functional diversity of the GABAAR system within the mouse colon providing a framework for developing GABAAR-based therapeutics in GI disorders.


Assuntos
Colo/anatomia & histologia , Sistema Nervoso Entérico/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Receptores de GABA-A/metabolismo , Animais , Colina O-Acetiltransferase/metabolismo , Hormônio Liberador da Corticotropina/metabolismo , Inibidores Enzimáticos/farmacologia , GABAérgicos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Liso/efeitos dos fármacos , Músculo Liso/metabolismo , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico Sintase/metabolismo , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Receptores de GABA-A/genética , Bloqueadores dos Canais de Sódio/farmacologia , Somatostatina/metabolismo , Estresse Psicológico/metabolismo , Tetrodotoxina/farmacologia
20.
Eur J Neurosci ; 40(3): 2487-501, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24773078

RESUMO

Modulation of thalamocortical (TC) relay neuron function has been implicated in the sedative and hypnotic effects of general anaesthetics. Inhibition of TC neurons is mediated predominantly by a combination of phasic and tonic inhibition, together with a recently described 'spillover' mode of inhibition, generated by the dynamic recruitment of extrasynaptic γ-aminobutyric acid (GABA)A receptors (GABAA Rs). Previous studies demonstrated that the intravenous anaesthetic etomidate enhances tonic and phasic inhibition in TC relay neurons, but it is not known how etomidate may influence spillover inhibition. Moreover, it is unclear how etomidate influences the excitability of TC neurons. Thus, to investigate the relative contribution of synaptic (α1ß2γ2) and extrasynaptic (α4ß2δ) GABAA Rs to the thalamic effects of etomidate, we performed whole-cell recordings from mouse TC neurons lacking synaptic (α1(0/0) ) or extrasynaptic (δ(0/0) ) GABAA Rs. Etomidate (3 µm) significantly inhibited action-potential discharge in a manner that was dependent on facilitation of both synaptic and extrasynaptic GABAA Rs, although enhanced tonic inhibition was dominant in this respect. Additionally, phasic inhibition evoked by stimulation of the nucleus reticularis exhibited a spillover component mediated by δ-GABAA Rs, which was significantly prolonged in the presence of etomidate. Thus, etomidate greatly enhanced the transient suppression of TC spike trains by evoked inhibitory postsynaptic potentials. Collectively, these results suggest that the deactivation of thalamus observed during etomidate-induced anaesthesia involves potentiation of tonic and phasic inhibition, and implicate amplification of spillover inhibition as a novel mechanism to regulate the gating of sensory information through the thalamus during anaesthetic states.


Assuntos
Anestésicos Intravenosos/farmacologia , Etomidato/farmacologia , Inibição Neural/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Receptores de GABA-A/metabolismo , Tálamo/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Animais , Feminino , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de GABA-A/genética , Sinapses/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...