Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Energy Lett ; 9(3): 934-940, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38482179

RESUMO

High power is a critical requirement of lithium-ion batteries designed to satisfy the load profiles of advanced air mobility. Here, we simulate the initial takeoff step of electric vertical takeoff and landing (eVTOL) vehicles powered by a lithium-ion battery that is subjected to an intense 15C discharge pulse at the beginning of the discharge cycle followed by a subsequent low-rate discharge. We conducted extensive electrochemical testing to assess the long-term stability of a lithium-ion battery under these high-strain conditions. The main finding is that despite the performance recovery observed at low rates, the reapplication of high rates leads to drastic cell failure. While the results highlight the eVTOL battery longevity challenge, the findings also emphasize the need for tailored battery chemistry designs for eVTOL applications to address both anode plating and cathode instability. In addition, innovative second-use strategies would be paramount upon completion of the eVTOL services.

2.
ChemSusChem ; 16(16): e202300350, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37198136

RESUMO

Lithium-ion battery cathode materials suffer from bulk and interfacial degradation issues, which negatively affect their electrochemical performance. Oxide coatings can mitigate some of these problems and improve electrochemical performance. However, current coating strategies have low throughput, are expensive, and have limited applicability. In this article, we describe a low-cost and scalable strategy for applying oxide coatings on cathode materials. We report synergistic effects of these oxide coatings on the performance of aqueously processed cathodes in cells. The SiO2 coating strategy developed herein improved mechanical, chemical, and electrochemical performance of aqueously processed Ni-, Mn- and Co-based cathodes. This strategy can be used on a variety of cathodes to improve the performance of aqueously processed Li-ion cells.

3.
Adv Sci (Weinh) ; 10(22): e2301091, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37202659

RESUMO

Conventional sodium-based layered oxide cathodes are extremely air sensitive and possess poor electrochemical performance along with safety concerns when operating at high voltage. The polyanion phosphate, Na3 V2 (PO4 )3 stands out as an excellent candidate due to its high nominal voltage, ambient air stability, and long cycle life. The caveat is that Na3 V2 (PO4 )3 can only exhibit reversible capacities in the range of 100 mAh g-1 , 20% below its theoretical capacity. Here, the synthesis and characterizations are reported for the first time of the sodium-rich vanadium oxyfluorophosphate, Na3.2 Ni0.2 V1.8 (PO4 )2 F2 O, a tailored derivative compound of Na3 V2 (PO4 )3 , with extensive electrochemical and structural analyses. Na3.2 Ni0.2 V1.8 (PO4 )2 F2 O delivers an initial reversible capacity of 117 mAh g-1 between 2.5 and 4.5 V under the 1C rate at room temperature, with 85% capacity retention after 900 cycles. The cycling stability is further improved when the material is cycled at 50 °C within 2.8-4.3 V for 100 cycles. When paired with a presodiated hard carbon, Na3.2 Ni0.2 V1.8 (PO4 )2 F2 O cycled with a capacity retention of 85% after 500 cycles. Cosubstitution of the transition metal and fluorine in Na3.2 Ni0.2 V1.8 (PO4 )2 F2 O as well as the sodium-rich structure are the major factors behind the improvement of specific capacity and cycling stability, which paves the way for this cathode in sodium-ion batteries.

4.
Adv Sci (Weinh) ; 10(17): e2300920, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37046184

RESUMO

Seawater batteries (SWBs) have gained tremendous interest in the electrochemical energy storage research field because of their low cost, natural abundance, and potential use for long-duration energy storage. Advancing a SWB to demonstration projects is plagued by the poor electrochemical performance stemming from the poor interfaces of the solid electrolyte (SE), as well as the structural and chemical instabilities and sluggish ionic transport properties. In this study, the anode compartment of a surrogate SWB is constructed with a Na | SE | hard carbon configuration, and tailored dopants are introduced into the Nasicon-type Na3 Zr2 Si2 PO12 (NZSP) SE membrane. After doping with TiO2 , a much more densely packed pellet with uniformly distributed porous structure is obtained. Changes in surface chemistry and local structure in the bulk are observed, which are believed to contribute to the improved ionic conductivity and higher critical current density of the TiO2 -doped NZSP. Stable cycling performance with reversible capacities based on different Na storage mechanisms are also demonstrated.

5.
ACS Appl Mater Interfaces ; 14(39): 44292-44302, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36129828

RESUMO

Interfacial mechanics are a significant contributor to the performance and degradation of solid-state batteries. Spatially resolved measurements of interfacial properties are extremely important to effectively model and understand the electrochemical behavior. Herein, we report the interfacial properties of thiophosphate (Li3PS4)- and argyrodite (Li6PS5Cl)-type solid electrolytes. Using atomic force microscopy, we showcase the differences in the surface morphology as well as adhesion of these materials. We also investigate solvent-less processing of hybrid electrolytes using UV-assisted curing. Physical, chemical, and structural characterizations of the materials highlight the differences in the surface morphology, chemical makeup, and distribution of the inorganic phases between the argyrodite and thiophosphate solid electrolytes.

6.
iScience ; 25(2): 103801, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35243215

RESUMO

The proper handling of end-of-life (EOL) lithium-ion batteries (LIBs) has become an urgent and challenging issue with the surging use of LIBs, in which recovering high-value cathodes not only relieves the pressure on the raw material supply chain but also minimizes environmental pollution. Beyond direct recycling of spent cathodes to their pristine states, the direct upcycling of spent cathodes to the next-generation cathodes is of great significance to maximize the value of spent materials and to sustain the fast development of LIBs. Herein, a "reciprocal ternary molten salts" (RTMS) system was developed to directly upcycle spent NMC 111 to Ni-rich NMCs by simultaneously realizing the addition of Ni and the relithiation of Li in spent NMC 111. After RTMS flux upcycling, the obtained Ni-rich NMCs exhibited an α-NaFeO2-type layered structure, restored Li content, and excellent performance, which is very similar to that of the pristine NMC 622.

7.
Adv Mater ; 32(34): e2002960, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32671935

RESUMO

In recent years, cobalt has become a critical constraint on the supply chain of the Li-ion battery industry. With the ever-increasing projections for electric vehicles, the dependency of current Li-ion batteries on the ever-fluctuating cobalt prices poses serious environmental and sustainability issues. To address these challenges, a new class of cobalt-free materials with general formula of LiNix Fey Alz O2 (x + y + z = 1), termed as the lithium iron aluminum nickelate (NFA) class of cathodes, is introduced. These cobalt-free materials are synthesized using the sol-gel process to explore their compositional landscape by varying aluminum and iron. These NFA variants are characterized using electron microscopy, neutron and X-ray diffraction, and Mössbauer and X-ray photoelectron spectroscopy to investigate their morphological, physical, and crystal-structure properties. Operando experiments by X-ray diffraction, Mössbauer spectroscopy, and galvanostatic intermittent titration have been also used to study the crystallographic transitions, electrochemical activity, and Li-ion diffusivity upon lithium removal and uptake in the NFA cathodes. NFA compositions yield specific capacities of ≈200 mAh g-1 , demonstrating reasonable rate capability and cycling stability with ≈80% capacity retention after 100 charge/discharge cycles. While this is an early stage of research, the potential that these cathodes could have as viable candidates in next-generation cobalt-free lithium-ion batteries is highlighted here.

8.
ChemSusChem ; 13(18): 5031-5040, 2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-32663377

RESUMO

Excellent structural stability, high operating voltage, and high capacity have made Na3 V2 (PO4 )2 F3 a promising cathode material for sodium-ion batteries. However, high-temperature battery performances and heat generation measurements have not been systematically reported yet. Carbon-coated Na3 V2 (PO4 )2 F3 @MWCNT (multi-walled carbon nanotube) samples are fabricated by a hydrothermal-assisted sol-gel method and the electrochemical performances are evaluated at three different temperatures (25, 45, and 55 °C). The well-crystallized Na3 V2 (PO4 )2 F3 @MWCNT samples exhibit good cycling stability at both low and high temperatures; they deliver an initial discharge capacity of 120-125 mAhg-1 at a 1 C rate with a retention of 53 % capacity after 1,400 cycles with 99 % columbic efficiency. The half-cell delivers a capacity of 100 mAhg-1 even at a high rate of 10 C at room temperature. Furthermore, the Na3 V2 (PO4 )2 F3 @MWCNT samples show good long-term durability; the capacity loss is an average of 0.05 % per cycle at a 1 C rate at 55 °C. Furthermore, ionic diffusivity and charge transfer resistance are evaluated as functions of state of charge, and they explain the high electrochemical performance of the Na3 V2 (PO4 )2 F3 @MWCNT samples. In-situ heat generation measurements reveal reversible results upon cycling owing to the high structural stability of the material. Excellent electrochemical performances are also demonstrated in the full-cell configuration with hard carbon as well as antimony Sb/C anodes.

9.
Chem Commun (Camb) ; 56(51): 6973-6976, 2020 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-32436505

RESUMO

A layered oxide cathode, LiNi0.6Mn0.2Co0.2O2, undergoes noticeable crystal expansion by losing significantly higher amounts of Li+ at the end of fast charging cycles. However, the bulk structure of the cycled NMC622 is restored back to its pristine discharged state when intercalated with enough lithium ions during an electrochemical process.

10.
ACS Appl Mater Interfaces ; 12(21): 23951-23958, 2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32368897

RESUMO

An engaging area of research in sodium-ion batteries (SIBs) has been focusing on discovery, design, and synthesis of high-capacity cathode materials in order to boost energy density to levels close enough to that of state-of-the-art lithium-ion batteries. Of particular interest, P2-type layered oxide, Na2/3Fe1/2Mn1/2O2, has been researched as a potential cathode in SIBs based on its high theoretical capacity of 260 mA h/g and use of noncritical materials. However, the reported synthesis methods are not only complex and energy-demanding but also often yield inhomogeneous and impure materials with capacities less than 200 mA h/g under impractical test conditions. Here, we report a novel synthesis route using low-temperature eutectic reaction to produce highly homogeneous, crystalline, and impurity-free P2-NaxFe1/2Mn1/2O2 with enhanced Na-ion diffusivity and kinetics. The overall electrochemical performances of the Na-ion cells have been improved by pairing the P2-cathode with presodiated hard carbon anodes, leading to reversible capacities in the range of 180 mA h/g. This new approach is a contribution toward the simplification of synthesis and scalability of sodium-based cathodes with high crystallinity and fine-tuned morphology and the realization of a sodium-ion battery system with lower cost and improved electrochemical performance.

11.
ChemSusChem ; 13(14): 3654-3661, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32356937

RESUMO

The formation of a solid-electrolyte interphase (SEI) on the surface of Li4 Ti5 O12 (LTO) has become a highly controversial topic, with arguments for it and against it. However, prior studies supporting the formation of an SEI layer have typically suggested that a layer forms upon cycling of a cell, although the layer is probed after disassembling. In this study, cubic mesostructured LTO is synthesized with crystallite domain sizes between 3 and 4 nm and uniform pores with diameters ≤8 nm. The mean pore size is controlled between 4-8 nm through the use of a triblock amphipathic copolymer with a tunable hydrophobic block as template and by thermal treatment. The LTO morphology obtained is spherical and evolves upon heat treatment. These materials show excellent electrochemical performance, including high rate capability and capacity retention. The LTO material is subjected to operando small-angle neutron scattering and X-ray photoelectron spectroscopy experiments, which reveal that the highly debated SEI forms at potentials as high as 2.2 V, first as a LiF-rich layer and subsequently by the growth of a carbonaceous layer. These SEI products form first on the smaller pores before forming on the mesopores.

12.
Inorg Chem ; 55(9): 4643-9, 2016 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-27054803

RESUMO

The new members of the Ag2-xNaxMn2Fe(VO4)3 (0 ≤ x ≤ 2) solid solution were synthesized by a solid-state reaction route, and their crystal structures were determined from single-crystal X-ray diffraction data. The physical properties were characterized by Mössbauer and electrochemical impedance spectroscopies, galvanostatic cycling, and cyclic voltammetry. These materials crystallize with a monoclinic symmetry (space group C2/c), and the structure is considered to be a new member of the AA'MM'2(XO4)3 alluaudite family. The A, A', M, and X sites are fully occupied by Ag(+)/Na(+), Ag(+)/Na(+), Mn(2+), and V(5+), respectively, whereas a Mn(2+)/Fe(3+) mixture is observed in the M' site. The Mössbauer spectra confirm that iron is trivalent. The impedance measurements indicate that the silver phase is a better conductor than the sodium phase. Furthermore, these phases exhibit ionic conductivities 2 orders of magnitude higher than those of the homologous phosphates. The electrochemical tests prove that Na2Mn2Fe(VO4)3 is active as positive and negative electrodes in sodium-ion batteries.

13.
Nat Commun ; 6: 6865, 2015 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-25882619

RESUMO

Delivery of high capacity with good retention is a challenge in developing cathodes for rechargeable sodium-ion batteries. Here we present a radially aligned hierarchical columnar structure in spherical particles with varied chemical composition from the inner end (Na[Ni0.75Co0.02Mn0.23]O2) to the outer end (Na[Ni0.58Co0.06Mn0.36]O2) of the structure. With this cathode material, we show that an electrochemical reaction based on Ni(2+/3+/4+) is readily available to deliver a discharge capacity of 157 mAh (g-oxide)(-1) (15 mA g(-1)), a capacity retention of 80% (125 mAh g(-1)) during 300 cycles in combination with a hard carbon anode, and a rate capability of 132.6 mAh g(-1) (1,500 mA g(-1), 10 C-rate). The cathode also exhibits good temperature performance even at -20°C. These results originate from rather unique chemistry of the cathode material, which enables the Ni redox reaction and minimizes the surface area contacting corrosive electrolyte.

14.
Nano Lett ; 15(5): 2863-8, 2015 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-25844807

RESUMO

Lithium-sulfur batteries could become an excellent alternative to replace the currently used lithium-ion batteries due to their higher energy density and lower production cost; however, commercialization of lithium-sulfur batteries has so far been limited due to the cyclability problems associated with both the sulfur cathode and the lithium-metal anode. Herein, we demonstrate a highly reliable lithium-sulfur battery showing cycle performance comparable to that of lithium-ion batteries; our design uses a highly reversible dual-type sulfur cathode (solid sulfur electrode and polysulfide catholyte) and a lithiated Si/SiOx nanosphere anode. Our lithium-sulfur cell shows superior battery performance in terms of high specific capacity, excellent charge-discharge efficiency, and remarkable cycle life, delivering a specific capacity of ∼750 mAh g(-1) over 500 cycles (85% of the initial capacity). These promising behaviors may arise from a synergistic effect of the enhanced electrochemical performance of the newly designed anode and the optimized layout of the cathode.

15.
Nano Lett ; 15(1): 514-22, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25485638

RESUMO

Voltage and capacity fading of layer structured lithium and manganese rich (LMR) transition metal oxide is directly related to the structural and composition evolution of the material during the cycling of the battery. However, understanding such evolution at atomic level remains elusive. On the basis of atomic level structural imaging, elemental mapping of the pristine and cycled samples, and density functional theory calculations, it is found that accompanying the hoping of Li ions is the simultaneous migration of Ni ions toward the surface from the bulk lattice, leading to the gradual depletion of Ni in the bulk lattice and thickening of a Ni enriched surface reconstruction layer (SRL). Furthermore, Ni and Mn also exhibit concentration partitions within the thin layer of SRL in the cycled samples where Ni is almost depleted at the very surface of the SRL, indicating the preferential dissolution of Ni ions in the electrolyte. Accompanying the elemental composition evolution, significant structural evolution is also observed and identified as a sequential phase transition of C2/m → I41 → Spinel. For the first time, it is found that the surface facet terminated with pure cation/anion is more stable than that with a mixture of cation and anion. These findings firmly established how the elemental species in the lattice of LMR cathode transfer from the bulk lattice to surface layer and further into the electrolyte, clarifying the long-standing confusion and debate on the structure and chemistry of the surface layer and their correlation with the voltage fading and capacity decaying of LMR cathode. Therefore, this work provides critical insights for design of cathode materials with both high capacity and voltage stability during cycling.

16.
ACS Appl Mater Interfaces ; 6(24): 21938-45, 2014 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-25425055

RESUMO

Understanding and controlling the sulfur reduction species (Li2Sx, 1 ≤ x ≤ 8) under realistic battery conditions are essential for the development of advanced practical Li-S cells that can reach their full theoretical capacity. However, it has been a great challenge to probe the sulfur reduction intermediates and products because of the lack of methods. This work employed various ex situ and in situ methods to study the mechanism of the Li-S redox reactions and the properties of Li2Sx and Li2S. Synchrotron high-energy X-ray diffraction analysis used to characterize dry powder deposits from lithium polysulfide solution suggests that the new crystallite phase may be lithium polysulfides. The formation of Li2S crystallites with a polyhedral structure was observed in cells with both the conventional (LiTFSI) electrolyte and polysulfide-based electrolyte. In addition, an in situ transmission electron microscopy experiment observed that the lithium diffusion to sulfur during discharge preferentially occurred at the sulfur surface and formed a solid Li2S crust. This may be the reason for the capacity fade in Li-S cells (as also suggested by EIS experiment in Supporting Information ). The results can be a guide for future studies and control of the sulfur species and meanwhile a baseline for approaching the theoretical capacity of the Li-S battery.

17.
ChemSusChem ; 7(9): 2457-60, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25044568

RESUMO

In this work, a novel lithium-sulfur battery was developed comprising Li2S as the cathode, lithium metal as the anode and polysulfide-based solution as the electrolyte. The electrochemical performances of these Li2S-based cells strongly depended upon the nature of the electrolytes. In the presence of the conventional electrolyte that consisted of lithium bis(trifluoromethanesulfonyl)-imide (LiTFSI) salt dissolved in a solvent combination of dimethoxyethane (DME)/1,3-dioxolane (DOL), the Li/Li2S cells showed sluggish kinetics, which translated into poor cycling and capacity retention. However, when using small amounts of polysulfides in the electrolyte along with a shuttle inhibitor the Li2S cathode was efficiently activated in the cell with the generation of over 1000 mAh g(-1) capacity and good cycle life.


Assuntos
Fontes de Energia Elétrica , Compostos de Lítio/química , Sulfetos/química , Eletrólitos/química
18.
ACS Nano ; 7(1): 760-7, 2013 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-23237664

RESUMO

Pristine Li-rich layered cathodes, such as Li(1.2)Ni(0.2)Mn(0.6)O(2) and Li(1.2)Ni(0.1)Mn(0.525)Co(0.175)O(2), were identified to exist in two different structures: LiMO(2)R3[overline]m and Li(2)MO(3)C2/m phases. Upon 300 cycles of charge/discharge, both phases gradually transform to the spinel structure. The transition from LiMO(2)R3[overline]m to spinel is accomplished through the migration of transition metal ions to the Li site without breaking down the lattice, leading to the formation of mosaic structured spinel grains within the parent particle. In contrast, transition from Li(2)MO(3)C2/m to spinel involves removal of Li(+) and O(2-), which produces large lattice strain and leads to the breakdown of the parent lattice. The newly formed spinel grains show random orientation within the same particle. Cracks and pores were also noticed within some layered nanoparticles after cycling, which is believed to be the consequence of the lattice breakdown and vacancy condensation upon removal of lithium ions. The AlF(3)-coating can partially relieve the spinel formation in the layered structure during cycling, resulting in a slower capacity decay. However, the AlF(3)-coating on the layered structure cannot ultimately stop the spinel formation. The observation of structure transition characteristics discussed in this paper provides direct explanation for the observed gradual capacity loss and poor rate performance of the layered composite. It also provides clues about how to improve the materials structure in order to improve electrochemical performance.


Assuntos
Fontes de Energia Elétrica , Eletrodos , Lítio/química , Nanopartículas/química , Desenho de Equipamento , Análise de Falha de Equipamento , Íons
19.
Nano Lett ; 12(10): 5186-91, 2012 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-22985059

RESUMO

A variety of approaches are being made to enhance the performance of lithium ion batteries. Incorporating multivalence transition-metal ions into metal oxide cathodes has been identified as an essential approach to achieve the necessary high voltage and high capacity. However, the fundamental mechanism that limits their power rate and cycling stability remains unclear. The power rate strongly depends on the lithium ion drift speed in the cathode. Crystallographically, these transition-metal-based cathodes frequently have a layered structure. In the classic wisdom, it is accepted that lithium ion travels swiftly within the layers moving out/in of the cathode during the charge/discharge. Here, we report the unexpected discovery of a thermodynamically driven, yet kinetically controlled, surface modification in the widely explored lithium nickel manganese oxide cathode material, which may inhibit the battery charge/discharge rate. We found that during cathode synthesis and processing before electrochemical cycling in the cell nickel can preferentially move along the fast diffusion channels and selectively segregate at the surface facets terminated with a mix of anions and cations. This segregation essentially can lead to a higher lithium diffusion barrier near the surface region of the particle. Therefore, it appears that the transition-metal dopant may help to provide high capacity and/or high voltage but can be located in a "wrong" location that may slow down lithium diffusion, limiting battery performance. In this circumstance, limitations in the properties of lithium ion batteries using these cathode materials can be determined more by the materials synthesis issues than by the operation within the battery itself.

20.
Inorg Chem ; 50(13): 5855-7, 2011 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-21627151

RESUMO

X-ray pair distribution function (PDF) methods and first-principles calculations have been combined to probe the structure of electrochemically lithiated TiO(2) Brookite. Traditional powder diffraction studies suggest that Brookite amorphizes upon lithium insertion, with the Bragg reflections disappearing. However, PDF analysis indicates that the TiO(2) framework connectivity is maintained throughout lithium intercalation, with expansions along the a and b axes. The Li(+) ions within the framework are poorly observed in the X-ray PDF, which is dominated by contributions from the more strongly scattering Ti and O atoms. First-principles calculations were used to identify energetically favorable Li(+) sites within the Brookite lattice and to develop a complete structural model of the lithiated material. This model replicates the local structure and decreased intermediate range order observed in the PDF data. The analysis suggests that local structural distortions of the TiO(2) lattice accommodate lithium in five-coordinate sites. This structural model is consistent with the observed electrochemical behavior.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...