Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 14(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35808716

RESUMO

Surface morphology affects cell attachment and proliferation. In this research, different films made of biodegradable polymers, poly(3-hydroxybutyrate) (PHB) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHB-co-HV), containing different molecular weights, with microstructured surfaces were investigated. Two methods were used to obtain patterned films-water-assisted self-assembly ("breath figure") and spin-coating techniques. The water-assisted technique made it possible to obtain porous films with a self-assembled pore structure, which is dependent on the monomer composition of a polymer along with its molecular weight and the technique parameters (distance from the nozzle, volume, and polymer concentration in working solution). Their pore morphologies were evaluated and their hydrophobicity was examined. Mesenchymal stem cells (MSCs) isolated from bone marrow were cultivated on a porous film surface. MSCs' attachment differed markedly depending on surface morphology. On strip-formed stamp films, MSCs elongated along the structure, however, they interacted with a larger area of film surface. The honeycomb films and column type films did not set the direction of extrusion, but cell flattening depended on structure topography. Thus, stem cells can "feel" the various surface morphologies of self-assembled honeycomb films and change their behavior depending on it.

2.
Polymers (Basel) ; 14(1)2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-35012152

RESUMO

This study investigated the effect of various cultivation conditions (sucrose/phosphate concentrations, aeration level) on alginate biosynthesis using the bacterial producing strain Azotobacter vinelandii 12 by the full factorial design (FFD) method and physicochemical properties (e.g., rheological properties) of the produced bacterial alginate. We demonstrated experimentally the applicability of bacterial alginate for tissue engineering (the cytotoxicity testing using mesenchymal stem cells (MSCs)). The isolated synthesis of high molecular weight (Mw) capsular alginate with a high level of acetylation (25%) was achieved by FFD method under a low sucrose concentration, an increased phosphate concentration, and a high aeration level. Testing the viscoelastic properties and cytotoxicity showed that bacterial alginate with a maximal Mw (574 kDa) formed the densest hydrogels (which demonstrated relatively low cytotoxicity for MSCs in contrast to bacterial alginate with low Mw). The obtained data have shown promising prospects in controlled biosynthesis of bacterial alginate with different physicochemical characteristics for various biomedical applications including tissue engineering.

3.
Polymers (Basel) ; 13(1)2020 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-33383857

RESUMO

Over the past century there was a significant development and extensive application of biodegradable and biocompatible polymers for their biomedical applications. This research investigates the dynamic change in properties of biodegradable polymers: poly(3-hydroxybutyrate (PHB), poly-l-lactide (PLA), and their 50:50 blend (PHB/PLA)) during their hydrolytic non-enzymatic (in phosphate buffered saline (PBS), at pH = 7.4, 37 °C) and enzymatic degradation (in PBS supplemented with 0.25 mg/mL pancreatic lipase). 3T3 fibroblast proliferation on the polymer films experiencing different degradation durations was also studied. Enzymatic degradation significantly accelerated the degradation rate of polymers compared to non-enzymatic hydrolytic degradation, whereas the seeding of 3T3 cells on the polymer films accelerated only the PLA molecular weight loss. Surprisingly, the immiscible nature of PHB/PLA blend (showed by differential scanning calorimetry) led to a slower and more uniform enzymatic degradation in comparison with pure polymers, PHB and PLA, which displayed a two-stage degradation process. PHB/PLA blend also displayed relatively stable cell viability on films upon exposure to degradation of different durations, which was associated with the uneven distribution of cells on polymer films. Thus, the obtained data are of great benefit for designing biodegradable scaffolds based on polymer blends for tissue engineering.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...