Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 9(20): 6149-6163, 2018 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-30265539

RESUMO

Thermally activated delayed fluorescence (TADF) offers promise for all-organic light-emitting diodes with quantum efficiencies competing with those of transition-metal-based phosphorescent devices. While computational efforts have so far largely focused on gas-phase calculations of singlet and triplet excitation energies, the design of TADF materials requires multiple methodological developments targeting among others a quantitative description of electronic excitation energetics, fully accounting for environmental electrostatics and molecular conformational effects, the accurate assessment of the quantum mechanical interactions that trigger the elementary electronic processes involved in TADF, and a robust picture for the dynamics of these fundamental processes. In this Perspective, we describe some recent progress along those lines and highlight the main challenges ahead for modeling, which we hope will be useful to the whole TADF community.

2.
Nat Commun ; 9(1): 954, 2018 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-29507287

RESUMO

Singlet fission, the spin-allowed photophysical process converting an excited singlet state into two triplet states, has attracted significant attention for device applications. Research so far has focused mainly on the understanding of singlet fission in pure materials, yet blends offer the promise of a controlled tuning of intermolecular interactions, impacting singlet fission efficiencies. Here we report a study of singlet fission in mixtures of pentacene with weakly interacting spacer molecules. Comparison of experimentally determined stationary optical properties and theoretical calculations indicates a reduction of charge-transfer interactions between pentacene molecules with increasing spacer molecule fraction. Theory predicts that the reduced interactions slow down singlet fission in these blends, but surprisingly we find that singlet fission occurs on a timescale comparable to that in pure crystalline pentacene. We explain the observed robustness of singlet fission in such mixed films by a mechanism of exciton diffusion to hot spots with closer intermolecular spacings.

3.
J Chem Phys ; 147(24): 244704, 2017 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-29289152

RESUMO

The interaction between 2,2'-bithiophene-5-carboxylic acid (PT2) sublimed under ultra-high vacuum conditions and anatase (101) and rutile (110) TiO2 single crystal surfaces is investigated by studying the electronic spectral density near the Fermi level with synchrotron-based spectroscopy. The experimental results are compared to density functional theory calculations of the isolated PT2 molecule and of the molecule adsorbed on an anatase TiO2 (101) cluster. The relative concentrations of Ti, C, and S atoms indicate that the adsorbed molecule remains intact upon deposition, which is typical of a Stranski-Krastanov growth mode. The analysis of the O1s spectrum suggests a predominant bidentate geometry of the adsorption with both rutile and anatase surfaces, as supported by previous theoretical simulations. It is also theoretically and experimentally demonstrated that the PT2 adsorption causes the appearance of new electronic states in the gap near the TiO2 valence band. A pinning effect of the LUMO level of the dye is also theoretically predicted.

4.
J Chem Phys ; 143(11): 114116, 2015 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-26395696

RESUMO

Here, we present a general approach to treating vibronic coupling in molecular crystals based on atomistic simulations of large clusters. Such clusters comprise model aggregates treated at the quantum chemical level embedded within a realistic environment treated at the molecular mechanics level. As we calculate ground and excited state equilibrium geometries and vibrational modes of model aggregates, our approach is able to capture effects arising from coupling to intermolecular degrees of freedom, absent from existing models relying on geometries and normal modes of single molecules. Using the geometries and vibrational modes of clusters, we are able to simulate the fluorescence spectra of aggregates for which the lowest excited state bears negligible oscillator strength (as is the case, e.g., ideal H-aggregates) by including both Franck-Condon (FC) and Herzberg-Teller (HT) vibronic transitions. The latter terms allow the adiabatic excited state of the cluster to couple with vibrations in a perturbative fashion via derivatives of the transition dipole moment along nuclear coordinates. While vibronic coupling simulations employing FC and HT terms are well established for single-molecules, to our knowledge this is the first time they are applied to molecular aggregates. Here, we apply this approach to the simulation of the low-temperature fluorescence spectrum of para-distyrylbenzene single-crystal H-aggregates and draw comparisons with coarse-grained Frenkel-Holstein approaches previously extensively applied to such systems.

5.
Phys Chem Chem Phys ; 16(38): 20887-99, 2014 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-25171574

RESUMO

We have investigated at the theoretical Density Functional Theory level the way the work function of zinc oxide layers is affected upon deposition of self-assembled monolayers (SAMs). 4-tert-Butylpyridine (4TBP) and various benzoic acids (BA) were adsorbed on the apolar (101[combining macron]0) ZnO and used as probe systems to assess the influence of several molecular parameters. For the benzoid acids, we have investigated the impact of changing the nature of the terminal group (H, CN, OCH3) and the binding mode of the carboxylic acid (monodentate versus bidentate) on the apolar (101[combining macron]0) surface. For each system, we have quantified the contribution from the molecular core and the anchoring group as well as of the degree of surface reconstruction on the work function shift. For the benzoic acids, the structural reorganization of the surface induces a negative shift of the work function by about 0.3 ± 0.15 eV depending on the nature of the binding mode, irrespective of the nature of the terminal function. The bond-dipole potential strongly contributes to the modification of the work function, with values in the range +1.2 to +2.0 eV. In the case of 4TBP, we further characterized the influence of the degree of coverage and of co-adsorbed species (H, OH, and water molecules) on the ZnO/SAM electronic properties as well as the influence of the ZnO surface polarity by considering several models of the polar (0001) ZnO surface. The introduction of water molecules in the (un)dissociated form at full coverage on the non-polar surface only reduces the work function by 0.3-0.4 eV compared to a reference system without co-adsorbed species. Regarding the polar surface, the work function is also significantly reduced upon deposition of a single 4BTP molecule (from -1.44 eV to -1.73 eV for our model structures), with a shift similar in direction and magnitude compared to the non-polar surfaces.

6.
J Chem Phys ; 139(3): 034502, 2013 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-23883042

RESUMO

The structure and dynamics of N-butyl-N-methyl pyrrolidinium(+) bis([tri]fluoro[methane]sulfonyl)imide(-) (PYR14(+)-[T]FSI(-)) ionic liquids doped with Li(T)FSI are investigated by combining experimental measurements to molecular dynamics simulations. The polarizable force field calculations indicate that the lithium cations are coordinated by (T)FSI anion oxygens forming lithium adducts stabilized over a large temperature range by strong Li-O bonds. Lithium aggregation is found to be negligible at the doping level considered here (10% mole fraction), and Li(+) diffusion occurs primarily by exchanging the (T)FSI anions in their first coordination shell. The resulting calculated transport properties are in good agreement with the corresponding nuclear magnetic resonance data.

7.
Phys Rev Lett ; 110(22): 226402, 2013 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-23767738

RESUMO

Quantum-chemical calculations are combined to a model Frenkel-Holstein Hamiltonian to assess the nature of the lowest electronic excitations in the pentacene crystal. We show that an admixture of charge-transfer excitations into the lowest singlet excited states form the origin of the Davydov splitting and mediate instantaneous singlet exciton fission by direct optical excitation of coherently coupled single and double exciton states, in agreement with recent experiments.

8.
Acc Chem Res ; 46(2): 434-43, 2013 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-23140088

RESUMO

The extraordinary semiconducting properties of conjugated organic materials continue to attract attention across disciplines including materials science, engineering, chemistry, and physics, particularly with application to organic electronics. Such materials are used as active components in light-emitting diodes, field-effect transistors, or photovoltaic cells, as a substitute for (mostly Si-based) inorganic semiconducting materials. Many strategies developed for inorganic semiconductor device building (doping, p-n junctions, etc.) have been attempted, often successfully, with organics, even though the key electronic and photophysical properties of organic thin films are fundamentally different from those of their bulk inorganic counterparts. In particular, organic materials consist of individual units (molecules or conjugated segments) that are coupled by weak intermolecular forces. The flexibility of organic synthesis has allowed the development of more efficient opto-electronic devices including impressive improvements in quantum yields for charge generation in organic solar cells and in light emission in electroluminescent displays. Nonetheless, a number of fundamental questions regarding the working principles of these devices remain that preclude their full optimization. For example, the role of intermolecular interactions in driving the geometric and electronic structures of solid-state conjugated materials, though ubiquitous in organic electronic devices, has long been overlooked, especially when it comes to these interfaces with other (in)organic materials or metals. Because they are soft and in most cases disordered, conjugated organic materials support localized electrons or holes associated with local geometric distortions, also known as polarons, as primary charge carriers. The spatial localization of excess charges in organics together with low dielectric constant (ε) entails very large electrostatic effects. It is therefore not obvious how these strongly interacting electron-hole pairs can potentially escape from their Coulomb well, a process that is at the heart of photoconversion or molecular doping. Yet they do, with near-quantitative yield in some cases. Limited screening by the low dielectric medium in organic materials leads to subtle static and dynamic electronic polarization effects that strongly impact the energy landscape for charges, which offers a rationale for this apparent inconsistency. In this Account, we use different theoretical approaches to predict the energy landscape of charge carriers at the molecular level and review a few case studies highlighting the role of electrostatic interactions in conjugated organic molecules. We describe the pros and cons of different theoretical approaches that provide access to the energy landscape defining the motion of charge carriers. We illustrate the applications of these approaches through selected examples involving OFETs, OLEDs, and solar cells. The three selected examples collectively show that energetic disorder governs device performances and highlights the relevance of theoretical tools to probe energy landscapes in molecular assemblies.


Assuntos
Compostos Orgânicos/química , Semicondutores , Simulação de Dinâmica Molecular , Eletricidade Estática
9.
J Chem Phys ; 137(17): 174708, 2012 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-23145743

RESUMO

The formation of dipoles at interfaces between organic semiconductors is expected to play a significant role in the operation of organic-based devices, though the electronic processes at their origin have still to be clearly elucidated. Quantum-chemical calculations can prove very useful to shed light on such electronic interfacial phenomena provided that a suitable theoretical approach is used. In this context, we have performed calculations on small vertical stacks of TTF-TCNQ molecules, first at the CAS-MRCI level to validate the use of single-determinantal approaches, then at the MP2 level set as a benchmark. Various density functional theory (DFT) functionals have then been applied to larger stacks, showing that long-range corrected functionals are required to reproduce MP2 results taken as benchmark. Finally, the use of periodic boundary conditions at the DFT level points to the huge impact of depolarization effects between adjacent stacks.

10.
J Phys Chem B ; 115(42): 12040-50, 2011 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-21894975

RESUMO

In the field of plastic electronics, low band gap conjugated polymers like poly(thienylene vinylene) (PTV) and its derivatives are a promising class of materials that can be obtained with high molecular weight via the so-called dithiocarbamate precursor route. We have performed a joint experimental-theoretical study of the full NMR chemical shift assignment in a series of thiophene-based model compounds, which aims at (i) benchmarking the quantum-chemical calculations against experiments, (ii) identifying the signature of possible structural defects that can appear during the polymerization of PTV's, namely head-to-head and tail-to-tail defects, and (iii) defining a criterion regarding regioregularity.

11.
J Chem Phys ; 134(20): 204703, 2011 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-21639463

RESUMO

A theory for polarized absorption in crystalline oligoacenes is presented, which includes Frenkel exciton coupling, the coupling between Frenkel and charge-transfer (CT) excitons, and the coupling of all neutral and ionic excited states to the dominant ring-breathing vibrational mode. For tetracene, spectra calculated using all Frenkel couplings among the five lowest energy molecular singlet states predict a Davydov splitting (DS) of the lowest energy (0-0) vibronic band of only -32 cm(-1), far smaller than the measured value of 631 cm(-1) and of the wrong sign-a negative sign indicating that the polarizations of the lower and upper Davydov components are reversed from experiment. Inclusion of Frenkel-CT coupling dramatically improves the agreement with experiment, yielding a 0-0 DS of 601 cm(-1) and a nearly quantitative reproduction of the relative spectral intensities of the 0-n vibronic components. Our analysis also shows that CT mixing increases with the size of the oligoacenes. We discuss the implications of these results on exciton dissociation and transport.

12.
Phys Rev Lett ; 104(20): 206405, 2010 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-20867046

RESUMO

A number of organic crystals show anisotropic excitonic couplings, with weak interlayer interactions between molecules that are more strongly coupled within the layers. The resulting energy carriers are intralayer 2D excitons that diffuse along the interlayer direction. We model this analytically for infinite layers and using quantum-chemical calculations of the electronic couplings for anthracene clusters. We show that the exciton hopping rates and diffusion lengths depend in a subtle manner on the size and shape of the interacting aggregates, temperature, and the presence of energetic disorder.

13.
J Chem Phys ; 130(21): 214505, 2009 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-19508074

RESUMO

Recent work has suggested that correlations in the environments of chromophores can lead to a change in the dynamics of excitation transfer in both the coherent and incoherent limits. An example of this effect that is relevant to many single molecule experiments occurs in the standard Forster model for resonant energy transfer (RET). The standard formula for the FRET rate breaks down when the electronic excitations on weakly interacting donor and acceptor couple to the same vibrational modes. The transfer rate can then no longer be factored into donor emission and acceptor absorption lineshapes, but must be recast in terms of a renormalized phonon reorganization energy accounting for the magnitude and sign of the excitation-vibration couplings. In this paper, we derive theoretically how the FRET rate depends on the shared mode structure and coupling, examine the simplified case of Gaussian lineshapes and then provide a quantitative calculation for a system of current interest.

14.
Phys Chem Chem Phys ; 11(25): 4996-5009, 2009 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-19562129

RESUMO

Partially deuterated 1,4-distyrylbenzene () is included into the pseudohexagonal nanochannels of perhydrotriphenylene (PHTP). The overall and intramolecular mobility of is investigated over a wide temperature range by (13)C, (2)H NMR as well as fluorescence spectroscopy. Simulations of the (2)H NMR spectral shapes reveal an overall wobble motion of in the channels with an amplitude of about 4 degrees at T = 220 K and 10 degrees at T = 410 K. Above T = 320 K the wobble motion is superimposed by localized 180 degrees flips of the terminal phenyl rings with a frequency of 10(6) Hz at T = 340 K. The activation energies of both types of motions are around 40 kJ mol(-1) which imply a strong sterical hindrance by the surrounding PHTP channels. The experimental vibrational structure of the fluorescence excitation spectra of is analyzed in terms of small amplitude ring torsional motions, which provide information about the spatial constraints on by the surrounding PHTP host matrix. Combining the results from NMR and fluorescence spectroscopy as well as of time-dependent density functional calculations yields the complete potential surfaces of the phenyl ring torsions. These results, which suggest that intramolecular mobility of is only reduced but not completely suppressed by the matrix, are corroborated by MD simulations. Unrealistically high potential barriers for phenyl ring flips are obtained from MD simulations using rigid PHTP matrices which demonstrate the importance of large amplitude motions of the PHTP host lattice for the mobility of the guest molecules.


Assuntos
Crisenos/química , Nanoestruturas/química , Teoria Quântica , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Espectrometria de Fluorescência , Propriedades de Superfície
15.
J Chem Phys ; 126(18): 184902, 2007 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-17508827

RESUMO

Single molecule fluorescence experiments have been performed on a BODIPY-based dye embedded in oligo(styrene) matrices to probe the density fluctuations and the relaxation dynamics of chain segments surrounding the dye molecules. The time-dependent fluorescence lifetime of the BODIPY probe was recorded as an observable for the local density fluctuations. At room temperature, the mean fraction of holes surrounding the probes is shown to be unaffected by the molecular weight in the glassy state. In contrast, the free volume increases significantly in the supercooled regime. These observations are discussed in the framework of the entropic theories of the glass transition.

16.
Phys Rev Lett ; 96(11): 117403, 2006 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-16605870

RESUMO

We have examined the Coulombic interactions at the interface in a blend of two copolymers with intramolecular charge-transfer character and optimized band offsets for photoinduced charge generation. The combination of both time-resolved measurements of photoluminescence, and quantum-chemical modeling of the heterojunction allows us to show that relative orientation across the heterojunction can lead to either a repulsive barrier ( approximately 65 meV) or an attractive interaction which can enhance the charge-transfer processes. We conclude that polymer orientation at the heterojunction can be as important as energy-band offsets in determining the dynamics of charge separation and optical emission.

17.
J Phys Chem A ; 110(10): 3447-53, 2006 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-16526623

RESUMO

Semiempirical Hartree-Fock techniques have been applied to assess the molecular parameters governing the efficiency of photoinduced charge generation and recombination processes in donor/acceptor complexes involving a three-ring oligophenylenevinylene as donor and perylene bisimide as acceptor. The corresponding rates have been estimated in the framework of the Marcus-Levich-Jortner formalism for different geometries of the complexes. The results indicate that dissociation pathways involving the lowest two charge transfer excited states contribute significantly to the dynamics of the whole process. The rates are found to be strongly sensitive to the relative position of the donor and acceptor units and can be rationalized in terms of symmetry arguments applied to relevant electronic levels.

18.
J Phys Chem B ; 109(21): 10594-604, 2005 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-16852286

RESUMO

Atomistic models based on quantum-chemical calculations are combined with time-resolved spectroscopic investigations to explore the migration of electronic excitations along oligophenylenevinylene-based chiral stacks. It is found that the usual Pauli master equation (PME) approach relying on uncoherent transport between individual chromophores underestimates the excitation diffusion dynamics, monitored here by the time decay of the transient polarization anisotropy. A better agreement to experiment is achieved when accounting for excitation delocalization among acceptor molecules, as implemented in a modified version of the PME model. The same models are applied to study light harvesting and trapping in guest-host systems built from oligomers of different lengths.

19.
J Phys Chem B ; 109(43): 20237-43, 2005 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-16853617

RESUMO

We report on a quantum-chemical study of the electronic and optical properties of unsubstituted oligo(phenylene vinylene) (OPV) radical cations. Our goal is to distinguish the impact of the choice of molecular geometry from the impact of the choice of quantum-chemical method, on the calculated optical transition energies. The geometry modifications upon ionization of the OPV chains are found to depend critically on the theoretical formalism: Hartree-Fock (HF) geometry optimizations lead to self-localization of the charged defects while pure density functional theory (DFT) results in a complete delocalization of the geometric modifications over the whole conjugated backbone. The electronic structure and vertical transition energy associated with the lowest excited state of the radical cations have been calculated at the post-Hartree-Fock level within a configuration interaction (HF-CI) scheme and using the time-dependent DFT (TD-DFT) formalism for different radical cation geometries. Interestingly, the changes in the calculated optical properties obtained when using different geometric structures are less important within a given method than the differences between methods for a given structure. The optical excitation is localized with HF-CI and delocalized with TD-DFT, almost irrespective of the molecular geometry; as a result, HF-CI excitation energies tend to saturate as the chain length increases, in contrast to the results from TD-DFT.

20.
J Chem Phys ; 121(12): 5567-78, 2004 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-15366979

RESUMO

We have implemented a coupled-cluster equation of motion approach combined with the intermediate neglect of differential overlap parametrization and applied it to study the excited states and optical absorptions in positively and negatively charged conjugated oligomers. The method is found to be both reliable and efficient. The theoretical results are in very good agreement with experiments and confirm that there appear two subgap absorption peaks upon polaron formation. Interestingly, the relative intensities of the polaron-induced subgap absorptions can be related to the extent of the lattice geometry relaxations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...