Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neuroinflammation ; 18(1): 79, 2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33757529

RESUMO

BACKGROUND: Pain is reported as the leading cause of disability in the common forms of inflammatory arthritis conditions. Acting as a key player in nociceptive processing, neuroinflammation, and neuron-glia communication, the chemokine CCL2/CCR2 axis holds great promise for controlling chronic painful arthritis. Here, we investigated how the CCL2/CCR2 system in the dorsal root ganglion (DRG) contributes to the peripheral inflammatory pain sensitization. METHODS: Repeated intrathecal (i.t.) administration of the CCR2 antagonist, INCB3344 was tested for its ability to reverse the nociceptive-related behaviors in the tonic formalin and complete Freund's adjuvant (CFA) inflammatory models. We further determined by qPCR the expression of CCL2/CCR2, SP and CGRP in DRG neurons from CFA-treated rats. Using DRG explants, acutely dissociated primary sensory neurons and calcium mobilization assay, we also assessed the release of CCL2 and sensitization of nociceptors. Finally, we examined by immunohistochemistry following nerve ligation the axonal transport of CCL2, SP, and CGRP from the sciatic nerve of CFA-treated rats. RESULTS: We first found that CFA-induced paw edema provoked an increase in CCL2/CCR2 and SP expression in ipsilateral DRGs, which was decreased after INCB3344 treatment. This upregulation in pronociceptive neuromodulators was accompanied by an enhanced nociceptive neuron excitability on days 3 and 10 post-CFA, as revealed by the CCR2-dependent increase in intracellular calcium mobilization following CCL2 stimulation. In DRG explants, we further demonstrated that the release of CCL2 was increased following peripheral inflammation. Finally, the excitation of nociceptors following peripheral inflammation stimulated the anterograde transport of SP at their peripheral nerve terminals. Importantly, blockade of CCR2 reduced sensory neuron excitability by limiting the calcium mobilization and subsequently decreased peripheral transport of SP towards the periphery. Finally, pharmacological inhibition of CCR2 reversed the pronociceptive action of CCL2 in rats receiving formalin injection and significantly reduced the neurogenic inflammation as well as the stimuli-evoked and movement-evoked nociceptive behaviors in CFA-treated rats. CONCLUSIONS: Our results provide significant mechanistic insights into the role of CCL2/CCR2 within the DRG in the development of peripheral inflammation, nociceptor sensitization, and pain hypersensitivity. We further unveil the therapeutic potential of targeting CCR2 for the treatment of painful inflammatory disorders.


Assuntos
Quimiocina CCL2/metabolismo , Gânglios Espinais/metabolismo , Hiperalgesia/metabolismo , Dor/metabolismo , Receptores CCR2/antagonistas & inibidores , Receptores CCR2/metabolismo , Animais , Células Cultivadas , Adjuvante de Freund/toxicidade , Gânglios Espinais/efeitos dos fármacos , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Injeções Espinhais , Masculino , Dor/induzido quimicamente , Dor/tratamento farmacológico , Pirrolidinas/administração & dosagem , Ratos , Ratos Sprague-Dawley
2.
Biochimie ; 170: 203-211, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32014503

RESUMO

Docosahexaenoic acid (DHA, 22:6n-3) is the main omega-3 polyunsaturated fatty acid in brain tissues necessary for common brain growth and function. DHA can be provided to the body through two origins: an exogenous origin, from direct dietary intakes and an endogenous one, from the bioconversion of the essential α-linolenic acid (ALA, 18:3n-3) in the liver. In humans, the biosynthesis of DHA from its precursor ALA is very low. A reduction in the cerebral amount of DHA is detected in patients suffering from neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. Considering the vital functions of DHA for the brain, new methodologies to target the brain with DHA offers encouraging perceptions in the improvement of precautionary and therapeutic approaches for neurodegenerative diseases. The aim of the present review was to provide better understanding of the cerebral uptake of DHA in different form including free fatty acids, Lysophosphatidylcholines LysoPC-DHA as well as structured phospholipids. First, we explored the special structure of the blood-brain barrier BBB, BBB being a physical and metabolic barrier with restrictive properties. Then, we discussed the incorporation of DHA into the membrane phospholipids of the brain, the neuroprotective and therapeutic effect of DHA for neurological diseases.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Ácidos Docosa-Hexaenoicos/farmacologia , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , Animais , Transporte Biológico , Ácidos Docosa-Hexaenoicos/administração & dosagem , Humanos , Doenças Neurodegenerativas/patologia
3.
Nutrients ; 12(1)2020 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-31963708

RESUMO

AceDoPC® is a structured glycerophospholipid that targets the brain with docosahexaenoic acid (DHA) and is neuroprotective in the experimental ischemic stroke. AceDoPC® is a stabilized form of the physiological 2-DHA-LysoPC with an acetyl group at the sn1 position; preventing the migration of DHA from the sn2 to sn1 position. In this study we aimed to know the bioavailability of 13C-labeled DHA after oral intake of a single dose of 13C-AceDoPC®, in comparison with 13C-DHA in triglycerides (TAG), using gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) to assess the 13C enrichment of DHA-containing lipids. 13C-DHA enrichment in plasma phospholipids was significantly higher after intake of AceDoPC® compared with TAG-DHA, peaking after 24 h in both cases. In red cells, 13C-DHA enrichment in choline phospholipids was comparable from both sources of DHA, with a maximum after 72 h, whereas the 13C-DHA enrichment in ethanolamine phospholipids was higher from AceDoPC® compared to TAG-DHA, and continued to increase after 144 h. Overall, our study indicates that DHA from AceDoPC® is more efficient than from TAG-DHA for a sustained accumulation in red cell ethanolamine phospholipids, which has been associated with increased brain accretion.


Assuntos
Ácidos Docosa-Hexaenoicos/sangue , Eritrócitos/metabolismo , Fosfatidilcolinas/sangue , Triglicerídeos/sangue , Administração Oral , Idoso , Disponibilidade Biológica , Estudos Cross-Over , Ácidos Docosa-Hexaenoicos/administração & dosagem , Método Duplo-Cego , França , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Masculino , Pessoa de Meia-Idade , Fosfatidilcolinas/administração & dosagem , Fatores de Tempo , Triglicerídeos/administração & dosagem
4.
J Chem Neuroanat ; 102: 101686, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31562917

RESUMO

Manganese (Mn) is an essential metallic trace element involved in several vital biological functions. Conversely, exposure to excessive levels of Mn induces manganism, causing neurodegeneration and symptoms similar to those seen in Parkinson's disease (PD). Docosahexaenoic acid (DHA) is a long-chain polyunsaturated fatty acid exhibiting neuroprotective properties against neurodegenerative diseases and brain injuries and is known to easily incorporate into membrane phospholipids of brain cells and meditates its corrective actions. In the present study, mice were used for a sub-acute Mn intoxication model to investigate DHA neuroprotective potential against Mn neurotoxicity. We also seek to understand the mechanism by which Mn intoxication induces these motor impairments at 30 mg/kg, by pretreatment with DHA at 200 mg/kg and assessment of changes in spontaneous locomotor behavior by open field test (OF), motor coordination using the rotarod test (RR) and strength by mean of weights test (WT). To highlight these effects on brain neurotransmission, we evaluated the tyrosine hydroxylase immunoreactivity (TH-IR) within substantia nigra compacta (SNC) and striatum (St). Results showed that Mn intoxication significantly altered motor behavior parameters including, decreased of traveled distance by 46%, decreased mean speed by 36%, reduced the ability to sustain the rotarod test to 42%; Moreover, a drop score was obtained using weights test and reflecting affected strength in Mn-intoxicated animals. Pretreatment by DHA prevents mice from Mn toxicity and maintain normal spontaneous activity, motor coordination and strength. Data also showed the ability of Mn to disrupt dopamine neurotransmission by altering tyrosine hydroxylase activity in the nigrostriatal pathway while in pretreated animals, DHA prevented this disruption. Data approved the potential neurotoxic effect of Mn as a risk factor of the Parkinsonism onset, and then demonstrated for the first time the neuroprotective and nutraceutical outcomes of DHA in the sub-acute Mn-intoxication animal model.


Assuntos
Ácidos Docosa-Hexaenoicos/uso terapêutico , Dopamina/metabolismo , Locomoção/efeitos dos fármacos , Intoxicação por Manganês/tratamento farmacológico , Atividade Motora/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Animais , Comportamento Animal/efeitos dos fármacos , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Ácidos Docosa-Hexaenoicos/farmacologia , Masculino , Manganês/toxicidade , Camundongos , Fármacos Neuroprotetores/farmacologia , Parte Compacta da Substância Negra/efeitos dos fármacos , Parte Compacta da Substância Negra/metabolismo , Teste de Desempenho do Rota-Rod , Transmissão Sináptica/efeitos dos fármacos , Tirosina 3-Mono-Oxigenase/metabolismo
5.
Mol Neurobiol ; 56(2): 986-999, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29858775

RESUMO

Docosahexaenoic acid (DHA, 22:6n-3) is an essential omega-3 polyunsaturated fatty acid (PUFA) that is required for proper brain development and cerebral functions. While DHA deficiency in the brain was shown to be linked to the emergence of cerebral diseases, a dietary intake of omega-3 PUFA could prevent or attenuate neurologic disturbances linked with aging or neurodegenerative diseases. In this context, targeting the brain with DHA might offer great promise in developing new therapeutics for neurodegenerative diseases. We previously synthesized a stabilized form of DHA-containing lysophosphatidylcholine a major vector of DHA transportation to the brain, which is 1-acetyl,2-docoshexaenoyl-glycerophosphocholine, named AceDoPC®. Injection of AceDoPC® or DHA after experimental ischemic stroke showed that both molecules had neuroprotective effects but AceDoPC® was the most potent. This study aims to investigate the beneficial effects of DHA either unesterified or esterified within AceDoPC® on a model of neurogenesis in vitro, under physiological or pathological conditions. The effect of protectin DX (PDX, a double lipoxygenase product of DHA) was also tested. We cultured neural stem progenitor cells (NSPCs) derived from the adult mouse brain under normal or hypoxigenic (ischemic) conditions in vitro. Neurogenesis study of cell cultures with AceDoPC® showed enhanced neurogenesis compared to addition of unesterified DHA, PDX, or vehicle control, especially under pathological conditions. Our studies of the potential mechanisms involved in neuroprotection hinted that AceDoPC® neuroprotective and regenerative effects might be due in part to its anti-oxidative effects. These results indicate the potential for novel therapeutics against stroke that target the brain.


Assuntos
Encéfalo/efeitos dos fármacos , Ácidos Graxos Ômega-3/farmacologia , Hipóxia , Neurogênese/efeitos dos fármacos , Animais , Encéfalo/patologia , Ácidos Docosa-Hexaenoicos/farmacologia , Hipóxia/patologia , Lisofosfatidilcolinas/farmacologia , Camundongos Endogâmicos C57BL , Doenças Neurodegenerativas/patologia , Neuroproteção/fisiologia , Fármacos Neuroprotetores/farmacologia , Acidente Vascular Cerebral/patologia
6.
J Nutr Biochem ; 38: 1-11, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27825512

RESUMO

Among omega-3 polyunsaturated fatty acids (PUFAs), docosahexaenoic acid (DHA, 22:6n-3) is important for adequate brain development and cognition. DHA is highly concentrated in the brain and plays an essential role in brain functioning. DHA, one of the major constituents in fish fats, readily crosses the blood-brain barrier from blood to the brain. Its critical role was further supported by its reduced levels in the brain of Alzheimer's disease (AD) patients. This agrees with a potential role of DHA in memory, learning and cognitive processes. Since there is yet no cure for dementia such as AD, there is growing interest in the role of DHA-supplemented diet in the prevention of AD pathogenesis. Accordingly, animal, epidemiological, preclinical and clinical studies indicated that DHA has neuroprotective effects in a number of neurodegenerative conditions including AD. The beneficial effects of this key omega-3 fatty acid supplementation may depend on the stage of disease progression, other dietary mediators and the apolipoprotein ApoE genotype. Herein, our review investigates, from animal and cell culture studies, the molecular mechanisms involved in the neuroprotective potential of DHA with emphasis on AD.


Assuntos
Doença de Alzheimer/prevenção & controle , Dieta Saudável , Ácidos Docosa-Hexaenoicos/uso terapêutico , Neuroproteção , Doença de Alzheimer/dietoterapia , Doença de Alzheimer/metabolismo , Animais , Suplementos Nutricionais , Ácidos Docosa-Hexaenoicos/metabolismo , Humanos , Fármacos Neuroprotetores/metabolismo , Fármacos Neuroprotetores/uso terapêutico
7.
Biochimie ; 130: 163-167, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27496085

RESUMO

Docosahexaenoic acid (DHA; 22:6 ω-3) is highly enriched in the brain and is required for proper brain development and function. Its deficiency has been shown to be linked with the emergence of neurological diseases. Dietary ω-3 fatty acid supplements including DHA have been suggested to improve neuronal development and enhance cognitive functions. However, mechanisms of DHA incorporation in the brain remain to be fully understood. Findings suggested that DHA is better incorporated when esterified within lysophospholipid rather than under its non-esterified form. Furthermore, DHA has the potential to be converted into diverse oxylipins with potential neuroprotective effects. Since DHA is poorly synthesized de novo, targeting the brain with specific carriers of DHA might provide novel therapeutic approaches to neurodegenerative diseases.


Assuntos
Encéfalo/metabolismo , Ácidos Docosa-Hexaenoicos/metabolismo , Doenças Neurodegenerativas/metabolismo , Fármacos Neuroprotetores/metabolismo , Animais , Transporte Biológico , Barreira Hematoencefálica/metabolismo , Ácidos Docosa-Hexaenoicos/administração & dosagem , Humanos , Lisofosfatidilcolinas/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Fármacos Neuroprotetores/administração & dosagem , Fosfatidilcolinas/metabolismo
8.
Neurobiol Dis ; 94: 32-43, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27260836

RESUMO

Single nucleotide polymorphisms in PICALM, a key component of clathrin-mediated endocytosis machinery, have been identified as genetic susceptibility loci for late onset Alzheimer's disease (LOAD). We previously reported that PICALM protein levels were decreased in AD brains and that PICALM was co-localised with neurofibrillary tangles in LOAD, familial AD with PSEN1 mutations and Down syndrome. In the present study, we analysed PICALM expression, cell localisation and association with pathological cellular inclusions in other tauopathies and in non-tau related neurodegenerative diseases. We observed that PICALM was associated with neuronal tau pathology in Pick disease and in progressive supranuclear palsy (PSP) and co-localised with both 3R and 4R tau positive inclusions unlike in corticobasal degeneration (CBD) or in frontotemporal lobar degeneration (FTLD)-MAPT P301L. PICALM immunoreactivities were not detected in tau-positive tufted astrocytes in PSP, astrocytic plaques in CBD, Lewy bodies in Lewy body disease, diffuse type (LBD) and in TDP-43-positive inclusions in FTLD. In the frontal cortex in tauopathies, the ratio of insoluble to soluble PICALM was increased while the level of soluble PICALM was decreased and was inversely correlated with the level of phosphotau. PICALM decrease was also significantly correlated with increased LC3-II and decreased Beclin-1 levels in tauopathies and in non-tau related neurodegenerative diseases. These results suggest that there is a close relationship between abnormal PICALM processing, tau pathology and impairment of autophagy in human neurodegenerative diseases.


Assuntos
Doença de Alzheimer/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Clatrina/metabolismo , Endocitose/fisiologia , Proteínas Monoméricas de Montagem de Clatrina/metabolismo , Doença de Pick/metabolismo , Pneumotórax/metabolismo , Proteínas tau/metabolismo , Encéfalo/metabolismo , Degeneração Lobar Frontotemporal/metabolismo , Humanos , Emaranhados Neurofibrilares/metabolismo , Neurônios/metabolismo , Fosforilação , Paralisia Supranuclear Progressiva/metabolismo , Tauopatias/patologia
9.
J Neuroinflammation ; 11: 45, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24606981

RESUMO

BACKGROUND: Functional alterations in the properties of Aß afferent fibers may account for the increased pain sensitivity observed under peripheral chronic inflammation. Among the voltage-gated sodium channels involved in the pathophysiology of pain, Na(v)1.8 has been shown to participate in the peripheral sensitization of nociceptors. However, to date, there is no evidence for a role of Na(v)1.8 in controlling Aß-fiber excitability following persistent inflammation. METHODS: Distribution and expression of Na(v)1.8 in dorsal root ganglia and sciatic nerves were qualitatively or quantitatively assessed by immunohistochemical staining and by real time-polymerase chain reaction at different time points following complete Freund's adjuvant (CFA) administration. Using a whole-cell patch-clamp configuration, we further determined both total INa and TTX-R Na(v)1.8 currents in large-soma dorsal root ganglia (DRG) neurons isolated from sham or CFA-treated rats. Finally, we analyzed the effects of ambroxol, a Na(v)1.8-preferring blocker on the electrophysiological properties of Nav1.8 currents and on the mechanical sensitivity and inflammation of the hind paw in CFA-treated rats. RESULTS: Our findings revealed that Na(v)1.8 is up-regulated in NF200-positive large sensory neurons and is subsequently anterogradely transported from the DRG cell bodies along the axons toward the periphery after CFA-induced inflammation. We also demonstrated that both total INa and Na(v)1.8 peak current densities are enhanced in inflamed large myelinated Aß-fiber neurons. Persistent inflammation leading to nociception also induced time-dependent changes in Aß-fiber neuron excitability by shifting the voltage-dependent activation of Na(v)1.8 in the hyperpolarizing direction, thus decreasing the current threshold for triggering action potentials. Finally, we found that ambroxol significantly reduces the potentiation of Na(v)1.8 currents in Aß-fiber neurons observed following intraplantar CFA injection and concomitantly blocks CFA-induced mechanical allodynia, suggesting that Na(v)1.8 regulation in Aß-fibers contributes to inflammatory pain. CONCLUSIONS: Collectively, these findings support a key role for Na(v)1.8 in controlling the excitability of Aß-fibers and its potential contribution to the development of mechanical allodynia under persistent inflammation.


Assuntos
Gânglios Espinais/citologia , Regulação da Expressão Gênica/fisiologia , Inflamação/patologia , Canal de Sódio Disparado por Voltagem NAV1.8/metabolismo , Fibras Nervosas Mielinizadas/metabolismo , Neurônios/metabolismo , Nervo Isquiático/metabolismo , Ambroxol/uso terapêutico , Animais , Anti-Inflamatórios/uso terapêutico , Modelos Animais de Doenças , Adjuvante de Freund , Gânglios Espinais/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação/induzido quimicamente , Inflamação/complicações , Masculino , Potenciais da Membrana/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Limiar da Dor/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/fisiologia , Ratos , Ratos Sprague-Dawley , Bloqueadores dos Canais de Sódio/farmacologia , Tetrodotoxina/farmacologia
10.
J Neurosci ; 31(50): 18381-90, 2011 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-22171040

RESUMO

Changes in function of voltage-gated sodium channels in nociceptive primary sensory neurons participate in the development of peripheral hyperexcitability that occurs in neuropathic and inflammatory chronic pain conditions. Among them, the tetrodotoxin-resistant (TTX-R) sodium channel Na(v)1.8, primarily expressed by small- and medium-sized dorsal root ganglion (DRG) neurons, substantially contributes to the upstroke of action potential in these neurons. Compelling evidence also revealed that the chemokine CCL2 plays a critical role in chronic pain facilitation via its binding to CCR2 receptors. In this study, we therefore investigated the effects of CCL2 on the density and kinetic properties of TTX-R Na(v)1.8 currents in acutely small/medium dissociated lumbar DRG neurons from naive adult rats. Whole-cell patch-clamp recordings demonstrated that CCL2 concentration-dependently increased TTX-resistant Na(v)1.8 current densities in both small- and medium-diameter sensory neurons. Incubation with CCL2 also shifted the activation and steady-state inactivation curves of Na(v)1.8 in a hyperpolarizing direction in small sensory neurons. No change in the activation and inactivation kinetics was, however, observed in medium-sized nociceptive neurons. Our electrophysiological recordings also demonstrated that the selective CCR2 antagonist INCB3344 [N-[2-[[(3S,4S)-1-E4-(1,3-benzodioxol-5-yl)-4-hydroxycyclohexyl]-4-ethoxy-3-pyrrolidinyl]amino]-2-oxoethyl]-3-(trifluoromethyl)benzamide] blocks the potentiation of Na(v)1.8 currents by CCL2 in a concentration-dependent manner. Furthermore, the enhancement in Na(v)1.8 currents was prevented by pretreatment with pertussis toxin (PTX) or gallein (a Gßγ inhibitor), indicating the involvement of Gßγ released from PTX-sensitive G(i/o)-proteins in the cross talk between CCR2 and Na(v)1.8. Together, our data clearly demonstrate that CCL2 may excite primary sensory neurons by acting on the biophysical properties of Na(v)1.8 currents via a CCR2/Gßγ-dependent mechanism.


Assuntos
Quimiocina CCL2/farmacologia , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Células Receptoras Sensoriais/metabolismo , Canais de Sódio/metabolismo , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Células Cultivadas , Quimiocina CCL2/metabolismo , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Canal de Sódio Disparado por Voltagem NAV1.8 , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Células Receptoras Sensoriais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...