RESUMO
Bioeroding sponges can cause extensive damage to aquaculture and wild shellfish fisheries. It has been suggested that heavy sponge infestations that reach the inner cavity of oysters may trigger shell repair and lead to adductor detachment. Consequently, energy provision into shell repair could reduce the energy available for other physiological processes and reduce the meat quality of commercially fished oysters. Nevertheless, the impacts of boring sponges on oysters and other shellfish hosts are inconclusive. We studied the interaction between boring sponges and their hosts and examined potential detrimental effects on an economically important oyster species Ostrea chilensis from Foveaux Strait (FS), New Zealand. We investigated the effect of different infestation levels with the bioeroding sponge Cliona sp. on commercial meat quality, condition, reproduction, and disease susceptibility. Meat quality was assessed with an index based on visual assessments used in the FS O. chilensis fishery. Meat condition was assessed with a common oyster condition index, while histological methods were used to assess sex, gonad stage, reproductive capacity, and pathogen presence. Commercial meat quality and condition of O. chilensis were unaffected by sponge infestation. There was no relationship between sex ratio, gonad developmental stage, or gonad index and sponge infestation. Lastly, we found no evidence that sponge infestation affects disease susceptibility in O. chilensis. Our results suggest that O. chilensis in FS is largely unaffected by infestation with Cliona sp. and therefore reinforces the growing body of evidence that the effects of sponge infestation can be highly variable among different host species, environments, and habitats.
Assuntos
Ostrea , Poríferos , Animais , Nova Zelândia , Suscetibilidade a Doenças/veterinária , Aquicultura , PesqueirosRESUMO
There is a paucity of information on the impacts of the 1997-8 El Niño event and subsequent climatic episodes on emergent intertidal coral reef assemblages. Given the environmental variability intertidal reefs experience, such reefs may potentially be more resilient to climatic events and provide important insights into the adaptation of reef fauna to future ocean warming. Here we report the results of a 17-year (1995-2011) biodiversity survey of four emergent coral reef ecosystems in Bahia, Brazil, to assess the impact of a major El Niño event on the reef fauna, and determine any subsequent recovery. The densities of two species of coral, Favia gravida and Siderastrea stellata, did not vary significantly across the survey period, indicating a high degree of tolerance to the El Niño associated stress. However, there were marked decreases in the diversity of other taxa. Molluscs, bryozoans and ascidians suffered severe declines in diversity and abundance and had not recovered to pre-El Niño levels by the end of the study. Echinoderms were reduced to a single species in 1999, Echinometra lucunter, although diversity levels had recovered by 2002. Sponge assemblages were not impacted by the 1997-8 event and their densities had increased by the study end. Multivariate analysis indicated that a stable invertebrate community had re-established on the reefs after the El Niño event, but it has a different overall composition to the pre-El Niño community. It is unclear if community recovery will continue given more time, but our study highlights that any increase in the frequency of large-scale climatic events to more than one a decade is likely to result in a persistent lower-diversity state. Our results also suggest some coral and sponge species are particularly resilient to the El Niño-associated stress and therefore represent suitable models to investigate temperature adaptation in reef organisms.
Assuntos
Antozoários , Recifes de Corais , El Niño Oscilação Sul , Animais , Biodiversidade , Brasil , Ecossistema , Meio Ambiente , PoríferosRESUMO
Coral reefs across the world are under threat from a range of stressors, and while there has been considerable focus on the impacts of these stressors on corals, far less is known about their effect on other reef organisms. The 1997-8 El-Niño Southern Oscillation (ENSO) had notable and severe impacts on coral reefs worldwide, but not all reef organisms were negatively impacted by this large-scale event. Here we describe how the sponge fauna at Bahia, Brazil was influenced by the 1997-8 ENSO event. Sponge assemblages from three contrasting reef habitats (reef tops, walls and shallow banks) at four sites were assessed annually from 1995 to 2011. The within-habitat sponge diversity did not vary significantly across the study period; however, there was a significant increase in density in all habitats. Multivariate analyses revealed no significant difference in sponge assemblage composition (ANOSIM) between pre- and post-ENSO years for any of the habitats, suggesting that neither the 1997-8 nor any subsequent smaller ENSO events have had any measurable impact on the reef sponge assemblage. Importantly, this is in marked contrast to the results previously reported for a suite of other taxa (including corals, echinoderms, bryozoans, and ascidians), which all suffered mass mortalities as a result of the ENSO event. Our results suggest that of all reef taxa, sponges have the potential to be resilient to large-scale thermal stress events and we hypothesize that sponges might be less affected by projected increases in sea surface temperature compared to other major groups of reef organisms.