Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 220: 118719, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35704979

RESUMO

This study assessed the feasibility of a novel vacuum-enhanced anaerobic digestion technology, referred to as IntensiCarbTM (IC), under mild vacuum pressure (110 mbar), compared to a control (conventional fermenter), and evaluated the impact of the vacuum on the activities of various microbial groups. Both fermenters (test and control) were operated with mixed (50% v/v) municipal sludge at solids concentrations of 2-2.5%, pH of 7.8-8.1, 40-45 °C, a theoretical solids retention time (SRT) of 3 days with different hydraulic retention times (HRT). The intensification factor (IF) of the IC, defined as SRT/HRT, was controlled at 1.3 and 2.0. Simultaneous thickening and fermentation intensification were achieved. Compared with the control, the IC, despite the shorter HRTs, achieved 29.5 to 90.2% increase in the VFA yield (79 to 116 mg ΔVFA/ g VSS vs 61 mg ΔVFA/ g VSS), and 16.2% to 56.4% increase (280 to 377 mg ΔsCOD/ g VSS vs 241 mg ΔsCOD/ g VSS), in the hydrolysis yield. Fermentate from the IC exhibited comparable specific denitrification rates to acetate. Further, the solids-free condensate contained low nutrient concentrations, and thus was far superior to a typical centrates from dewatering as a carbon source. No adverse effects of vacuum on the activity of fermentative bacteria and methanogens were observed. This study demonstrated that the IC can be deployed as an intensification technology for both fermentation and anaerobic digestion of biosolids with the additional significant advantage, i.e. elimination of sidestream ammonia treatment requirements.


Assuntos
Reatores Biológicos , Esgotos , Anaerobiose , Fermentação , Hidrólise , Esgotos/microbiologia , Vácuo
2.
Water Environ Res ; 94(3): e10694, 2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35243725

RESUMO

This study demonstrates the potential of an innovative anaerobic treatment technology for municipal biosolids (IntensiCarb), which relies on vacuum evaporation to decouple solids and hydraulic retention times (SRT and HRT). We present proof-of-concept experiments using primary sludge and thickened waste activated sludge (50-50 v/v mixture) as feed for fermentation and carbon upgrading with the IntensiCarb unit. IntensiCarb fully decoupled the HRT and SRT in continuously stirred anaerobic reactors (CSAR) to achieve two intensification factors, that is, 1.3 and 2, while keeping the SRT constant at 3 days (including in the control fermenter). The intensified CSARs were compared to a conventional control system to determine the yields of particulate hydrolysis, VFA production, and nitrogen partitioning between fermentate and condensate. The intensified CSAR operating at an intensification factor 2 achieved a 65% improvement in particulate solubilization. Almost 50% of total ammonia was extracted without pH adjustment, while carbon was retained in the fermentate. Based on these results, the IntensiCarb technology allows water resource recovery facilities to achieve a high degree of plant-wide intensification while partitioning nutrients into different streams and thickening solids. PRACTITIONER POINTS: The IntensiCarb reactor can decouple hydraulic (HRT) and solids (SRT) retention times in anaerobic systems while also increasing particulate hydrolysis and overall plant capacity. Using vacuum as driving force of the IntensiCarb technology, the system could achieve thickening, digestion, and partial dewatering in the same unit-thus eliminating the complexity of multi-stage biosolids treatment lines. The ability to partition nutrients between particulate, fermentate, and condensate assigns to the IntensiCarb unit a key role in recovery strategies for value-added products such as nitrogen, phosphorus, and carbon, which can be recovered separately and independently.

3.
Water Res ; 169: 115178, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31670085

RESUMO

Pilot testing of direct potable reuse (DPR) using multi-stage ozone and biological filtration as an alternative treatment train without reverse osmosis (RO) was investigated. This study examined four blending ratios of advanced treated reclaimed water from the F. Wayne Hill Water Resources Center (FWH WRC) in Gwinnett County, Georgia, combined with the existing drinking water treatment plant raw water supply, Lake Lanier, for potable water production. Baseline testing with 100 percent (%) Lake Lanier water was initially conducted; followed by testing blends of 15, 25, 50, and 100% reclaimed water from FWH WRC. Finished water quality from the DPR pilot was compared to drinking water standards, and emerging microbial and chemical contaminants were also evaluated. Results were benchmarked against a parallel indirect potable reuse (IPR) pilot receiving 100% of the raw water from Lake Lanier. Finished water quality from the DPR pilot at the 15% blend complied with the United States primary and secondary maximum contaminant levels (MCLs and SMCLs, respectively). However, exceedances of one or more MCLs or SMCLs were observed at higher blends. Importantly, reclaimed water from FWH WRC was of equal or better quality for all microbiological targets tested compared to Lake Lanier, indicating that a DPR scenario could lower acute risks from microbial pathogens compared to current practices. Finished water from the DPR pilot had no detections of microorganisms, even at the 100% FWH WRC effluent blend. Microbiological targets tested included heterotrophic plate counts, total and fecal coliforms, Escherichia coli, somatic and male-specific coliphage, Clostridium perfringens, Enterococci, Legionella, Cryptosporidium, and Giardia. There were water quality challenges, primarily associated with nitrate originating from incomplete denitrification and bromate formation from ozonation at the FWH WRC. These challenges highlight the importance of upstream process monitoring and control at the advanced wastewater treatment facility if DPR is considered. This research demonstrated that ozone with biological filtration could achieve potable water quality criteria, without the use of RO, in cases where nitrate is below the MCL of 10 mg nitrogen per liter and total dissolved solids are below the SMCL of 500 mg per liter.


Assuntos
Criptosporidiose , Cryptosporidium , Água Potável , Ozônio , Poluentes Químicos da Água , Purificação da Água , Animais , Georgia , Osmose , Águas Residuárias
4.
J Am Water Works Assoc ; 111(7): 12-23, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32313288

RESUMO

Needless to say, the safety of treated water for potable reuse must be definitively ensured. Numerous methods are available for assessing water quality; it's important to understand their challenges and limitations.

5.
J Environ Manage ; 221: 1-9, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29793207

RESUMO

Peracetic acid (PAA) is a strong oxidant/bactericide that has been applied in various industries (e.g., food processing, pharmaceuticals, medical device sterilization, etc.) as a disinfectant. There is increasing interest in using PAA for wastewater disinfection because it does not form halogenated byproducts, and no post-treatment quenching is required. Previous studies have demonstrated good efficiency in controlling bacteria in wastewater, but limited information is available for viruses, especially those hosted by mammals (e.g., norovirus). Therefore, a study on the infectivity reduction of murine norovirus (MNV) was undertaken to evaluate the disinfection efficacy of PAA or UV alone and in combination with UV irradiation in undisinfected secondary effluent from a municipal wastewater reclamation facility (MWW) and phosphate buffer solution (PBS) at pH 7. Experiments employing MS2 bacteriophage were also performed in parallel for comparison purposes. MS2 infectivity reduction was found to be lower than MNV infectivity reduction for each condition studied - PAA, PAA + UV, and UV disinfection. These data suggest that MS2 may not be an appropriate surrogate to accurately predict the reduction of MNV infectivity. UV irradiation, in a dose range of 5-250 mJ/cm2, provided linear log inactivation (-log (N/N0)) with a regression slope (cm2mJ-1) of 0.031-0.034 and 0.165-0.202 for MS2 and MNV, respectively. UV irradiation provided similar inactivation for MS2 and MNV in both suspensions (PBS or MWW). Low infectivity reduction of MS2 was observed when PAA was used alone at a practical dose of 1.5 mg/L and below. A greater reduction of both MNV and MS2 was observed in PAA disinfection experiments using PBS as the microbial suspension medium, than in secondary effluent. Similar results were observed in PAA + UV experiments, in which greater synergistic effects were found in PBS than in MWW. Results of OH radical formation experiments suggest the presence of radical scavengers in MWW, which resulted in less opportunity for MNV and MS2 to encounter OHradicals. This study also demonstrated that the type of water can have a substantial impact on wastewater disinfection when employing PAA or PAA + UV treatment due to the matrix effect and the presence of radical scavengers, respectively. The results from this study could be employed to aid in the conceptual design of PAA and UV disinfection facilities, especially when norovirus is the organism of concern.


Assuntos
Levivirus , Norovirus , Raios Ultravioleta , Águas Residuárias , Animais , Desinfecção , Camundongos , Ácido Peracético
6.
Environ Sci Technol ; 51(5): 2972-2981, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28165216

RESUMO

Chlorination has long been used for disinfection of municipal wastewater (MWW) effluent while the use peracetic acid (PAA) has been proposed more recently in the United States. Previous work has demonstrated the bactericidal effectiveness of PAA and monochloramine in wastewater, but limited information is available for viruses, especially ones of mammalian origin (e.g., norovirus). Therefore, a comparative assessment was performed of the virucidal efficacy of PAA and monochloramine against murine norovirus (MNV) and MS2 bacteriophage in secondary effluent MWW and phosphate buffer (PB). A suite of inactivation kinetic models was fit to the viral inactivation data. Predicted concentration-time (CT) values for 1-log10 MS2 reduction by PAA and monochloramine in MWW were 1254 and 1228 mg-min/L, respectively. The 1-, 2-, and 3-log10 model predicted CT values for MNV viral reduction in MWW were 32, 47, and 69 mg-min/L for PAA and 6, 13, and 28 mg-min/L for monochloramine, respectively. Wastewater treatment plant disinfection practices informed by MS2 inactivation data will likely be protective for public health but may overestimate CT values for reduction of MNV. Additionally, equivalent CT values in PB resulted in greater viral reduction which indicate that viral inactivation data in laboratory grade water may not be generalizable to MWW applications.


Assuntos
Ácido Peracético , Águas Residuárias , Animais , Desinfetantes , Desinfecção , Humanos , Levivirus , Camundongos , Norovirus , Inativação de Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...