Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 286(18): 15707-15, 2011 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-21393244

RESUMO

Lipolysis is a critical metabolic pathway contributing to energy homeostasis through degradation of triacylglycerides stored in lipid droplets (LDs), releasing fatty acids. Neutral lipid lipases act at the oil/water interface. In mammalian cells, LD surfaces are coated with one or more members of the perilipin protein family, which serve important functions in regulating lipolysis. We investigated mechanisms by which three perilipin proteins control lipolysis by adipocyte triglyceride lipase (ATGL), a key lipase in adipocytes and non-adipose cells. Using a cell culture model, we examined interactions of ATGL and its co-lipase CGI-58 with perilipin 1 (perilipin A), perilipin 2 (adipose differentiation-related protein), and perilipin 5 (LSDP5) using multiple techniques as follows: anisotropy Forster resonance energy transfer, co-immunoprecipitation, [(32)P]orthophosphate radiolabeling, and measurement of lipolysis. The results show that ATGL interacts with CGI-58 and perilipin 5; the latter is selectively expressed in oxidative tissues. Both proteins independently recruited ATGL to the LD surface, but with opposite effects; interaction of ATGL with CGI-58 increased lipolysis, whereas interaction of ATGL with perilipin 5 decreased lipolysis. In contrast, neither perilipin 1 nor 2 interacted directly with ATGL. Activation of protein kinase A (PKA) increased [(32)P]orthophosphate incorporation into perilipin 5 by 2-fold, whereas neither ATGL nor CGI-58 was labeled under the incubation conditions. Cells expressing both ectopic perilipin 5 and ATGL showed a 3-fold increase in lipolysis following activation of PKA. Our studies establish perilipin 5 as a novel ATGL partner and provide evidence that the protein composition of perilipins at the LD surface regulates lipolytic activity of ATGL.


Assuntos
Adipócitos/metabolismo , Metabolismo Energético/fisiologia , Lipase/metabolismo , Lipólise/fisiologia , Fosfoproteínas/metabolismo , 1-Acilglicerol-3-Fosfato O-Aciltransferase/genética , 1-Acilglicerol-3-Fosfato O-Aciltransferase/metabolismo , Células 3T3-L1 , Adipócitos/citologia , Animais , Células CHO , Proteínas de Transporte , Cricetinae , Cricetulus , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ativação Enzimática/fisiologia , Humanos , Lipase/genética , Masculino , Camundongos , Estresse Oxidativo/fisiologia , Perilipina-1 , Fosfoproteínas/genética
2.
PLoS Biol ; 6(11): e292, 2008 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-19067489

RESUMO

Lipid droplets are ubiquitous triglyceride and sterol ester storage organelles required for energy storage homeostasis and biosynthesis. Although little is known about lipid droplet formation and regulation, it is clear that members of the PAT (perilipin, adipocyte differentiation related protein, tail interacting protein of 47 kDa) protein family coat the droplet surface and mediate interactions with lipases that remobilize the stored lipids. We identified key Drosophila candidate genes for lipid droplet regulation by RNA interference (RNAi) screening with an image segmentation-based optical read-out system, and show that these regulatory functions are conserved in the mouse. Those include the vesicle-mediated Coat Protein Complex I (COPI) transport complex, which is required for limiting lipid storage. We found that COPI components regulate the PAT protein composition at the lipid droplet surface, and promote the association of adipocyte triglyceride lipase (ATGL) with the lipid droplet surface to mediate lipolysis. Two compounds known to inhibit COPI function, Exo1 and Brefeldin A, phenocopy COPI knockdowns. Furthermore, RNAi inhibition of ATGL and simultaneous drug treatment indicate that COPI and ATGL function in the same pathway. These data indicate that the COPI complex is an evolutionarily conserved regulator of lipid homeostasis, and highlight an interaction between vesicle transport systems and lipid droplets.


Assuntos
Complexo I de Proteína do Envoltório/metabolismo , Proteínas de Drosophila/metabolismo , Homeostase/genética , Metabolismo dos Lipídeos/fisiologia , Adipócitos/metabolismo , Animais , Proteínas de Transporte , Complexo I de Proteína do Envoltório/genética , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Corpo Adiposo/química , Corpo Adiposo/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Regulação da Expressão Gênica , Metabolismo dos Lipídeos/genética , Lipólise/genética , Camundongos , Perilipina-1 , Fenótipo , Fosfoproteínas/metabolismo , Proteoma , Interferência de RNA
3.
Diabetes ; 57(8): 2037-45, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18487449

RESUMO

OBJECTIVE: Accumulation of intracellular lipid droplets (LDs) in non-adipose tissues is recognized as a strong prognostic factor for the development of insulin resistance in obesity. LDs are coated with perilipin, adipose differentiation-related protein, tail interacting protein of 47 kd (PAT) proteins that are thought to regulate LD turnover by modulating lipolysis. Our hypothesis is that PAT proteins modulate LD metabolism and therefore insulin resistance. RESEARCH DESIGN AND METHODS: We used a cell culture model (murine AML12 loaded with oleic acid) and small interfering RNA to directly assess the impact of PAT proteins on LD accumulation, lipid metabolism, and insulin action. PAT proteins associated with excess fat deposited in livers of diet-induced obese (DIO) mice were also measured. RESULTS: Cells lacking PAT proteins exhibited a dramatic increase in LD size and a decrease in LD number. Further, the lipolytic rate increased by approximately 2- to 2.5-fold in association with increased adipose triglyceride lipase (ATGL) at the LD surface. Downregulation of PAT proteins also produced insulin resistance, as indicated by decreased insulin stimulation of Akt phosphorylation (P < 0.001). Phosphoinositide-dependent kinase-1 and phosphoinositide 3-kinase decreased, and insulin receptor substrate-1 307 phosphorylation increased. Increased lipids in DIO mice livers were accompanied by changes in PAT composition but also increased ATGL, suggesting a relative PAT deficiency. CONCLUSIONS: These data establish an important role for PAT proteins as surfactant at the LD surface, packaging lipids in smaller units and restricting access of lipases and thus preventing insulin resistance. We suggest that a deficiency of PAT proteins relative to the quantity of ectopic fat could contribute to cellular dysfunction in obesity and type 2 diabetes.


Assuntos
Proteínas de Transporte/fisiologia , Hepatócitos/metabolismo , Proteínas de Membrana/fisiologia , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Células Cultivadas , Cromatografia em Camada Fina , Regulação para Baixo , Ácidos Graxos não Esterificados/metabolismo , Hepatócitos/citologia , Immunoblotting , Imuno-Histoquímica , Resistência à Insulina/fisiologia , Metabolismo dos Lipídeos/fisiologia , Lipólise/fisiologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Perilipina-2 , Perilipina-3 , RNA Interferente Pequeno/genética
4.
J Biol Chem ; 281(45): 34341-8, 2006 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-16968708

RESUMO

Ectopic accumulation of lipid droplets in non-adipose tissues correlates with the degree of insulin resistance in these tissues. Emerging evidence indicates that lipid droplets are specialized organelles that participate in lipid metabolism and intracellular trafficking. These properties are thought to derive from the lipid droplet-associated PAT protein family (perilipin, ADFP, and Tip47). The functions of the ubiquitously distributed adipose differentiation-related protein (ADFP) and Tip47 remain unknown. To evaluate the roles of ADFP and Tip47 in lipid biogenesis and metabolism, ADFP null and wild type (wt) clonal cell lines were established from ADFP null and wt mice, respectively. In ADFP null cells, Tip47 was identified as the sole lipid droplet-associated protein from the PAT family by mass spectroscopy, which was further confirmed by immunoblotting and immunocytochemistry. Following incubation with oleic acid, ADFP null cells were able to form lipid droplets to the same extent as wt cells. No statistical differences between the two cell types were observed in NEFA uptake or lipolysis. Small interference RNAs (siRNAs) against Tip47 were found to down-regulate protein levels for Tip47 by 85%. ADFP null cells treated with Tip47 siRNA retained the ability to form lipid droplets but to a lesser extent and shunted the utilization of exogenously added NEFA from triglycerides to phospholipids. These data support the hypothesis that Tip47 plays an important role in lipid metabolism. Tip47 and ADFP in peripheral tissues may play a critical role in regulating the formation and turnover, and hence metabolic consequences, of ectopic fat.


Assuntos
Adipócitos/citologia , Tecido Adiposo/metabolismo , Diferenciação Celular , Embrião de Mamíferos/metabolismo , Fibroblastos/metabolismo , Proteínas de Membrana/fisiologia , Proteínas da Gravidez/fisiologia , Adipócitos/metabolismo , Tecido Adiposo/citologia , Animais , Linhagem Celular , Cromatografia em Camada Fina , Embrião de Mamíferos/citologia , Fibroblastos/citologia , Immunoblotting , Técnicas Imunoenzimáticas , Metabolismo dos Lipídeos , Lipólise , Espectrometria de Massas , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Perilipina-2 , Fosfolipídeos/metabolismo , Proteínas da Gravidez/genética , RNA Interferente Pequeno/farmacologia , Triglicerídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...