Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38731874

RESUMO

The mitochondrial protein IF1 is upregulated in many tumors and acts as a pro-oncogenic protein through its interaction with the ATP synthase and the inhibition of apoptosis. We have recently characterized the molecular nature of the IF1-Oligomycin Sensitivity Conferring Protein (OSCP) subunit interaction; however, it remains to be determined whether this interaction could be targeted for novel anti-cancer therapeutic intervention. We generated mitochondria-targeting peptides to displace IF1 from the OSCP interaction. The use of one selective peptide led to displacement of the inhibitor IF1 from ATP synthase, as shown by immunoprecipitation. NMR spectroscopy analysis, aimed at clarifying whether these peptides were able to directly bind to the OSCP protein, identified a second peptide which showed affinity for the N-terminal region of this subunit overlapping the IF1 binding region. In situ treatment with the membrane-permeable derivatives of these peptides in HeLa cells, that are silenced for the IF1 inhibitor protein, showed significant inhibition in mitochondrial permeability transition and no effects on mitochondrial respiration. These peptides mimic the effects of the IF1 inhibitor protein in cancer HeLa cells and confirm that the IF1-OSCP interaction inhibits apoptosis. A third peptide was identified which counteracts the anti-apoptotic role of IF1, showing that OSCP is a promising target for anti-cancer therapies.


Assuntos
ATPases Mitocondriais Próton-Translocadoras , Peptídeos , Humanos , Células HeLa , ATPases Mitocondriais Próton-Translocadoras/metabolismo , ATPases Mitocondriais Próton-Translocadoras/antagonistas & inibidores , Peptídeos/farmacologia , Peptídeos/química , Peptídeos/metabolismo , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Apoptose/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Proteína Inibidora de ATPase , Ligação Proteica , Proteínas de Transporte da Membrana Mitocondrial/metabolismo
2.
Int J Mol Sci ; 25(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38339189

RESUMO

Nqo15 is a subunit of respiratory complex I of the bacterium Thermus thermophilus, with strong structural similarity to human frataxin (FXN), a protein involved in the mitochondrial disease Friedreich's ataxia (FRDA). Recently, we showed that the expression of recombinant Nqo15 can ameliorate the respiratory phenotype of FRDA patients' cells, and this prompted us to further characterize both the Nqo15 solution's behavior and its potential functional overlap with FXN, using a combination of in silico and in vitro techniques. We studied the analogy of Nqo15 and FXN by performing extensive database searches based on sequence and structure. Nqo15's folding and flexibility were investigated by combining nuclear magnetic resonance (NMR), circular dichroism, and coarse-grained molecular dynamics simulations. Nqo15's iron-binding properties were studied using NMR, fluorescence, and specific assays and its desulfurase activation by biochemical assays. We found that the recombinant Nqo15 isolated from complex I is monomeric, stable, folded in solution, and highly dynamic. Nqo15 does not share the iron-binding properties of FXN or its desulfurase activation function.


Assuntos
Frataxina , Ataxia de Friedreich , Humanos , Complexo I de Transporte de Elétrons/metabolismo , Thermus thermophilus/metabolismo , Simulação de Dinâmica Molecular , Ferro/metabolismo , Proteínas de Ligação ao Ferro/metabolismo , Ataxia de Friedreich/metabolismo
3.
Protein Sci ; 33(3): e4914, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38358255

RESUMO

Cryptochromes are cardinal constituents of the circadian clock, which orchestrates daily physiological rhythms in living organisms. A growing body of evidence points to their participation in pathways that have not traditionally been associated with circadian clock regulation, implying that cryptochromes may be subject to modulation by multiple signaling mechanisms. In this study, we demonstrate that human CRY2 (hCRY2) forms a complex with the large, modular scaffolding protein known as Multi-PDZ Domain Protein 1 (MUPP1). This interaction is facilitated by the calcium-binding protein Calmodulin (CaM) in a calcium-dependent manner. Our findings suggest a novel cooperative mechanism for the regulation of mammalian cryptochromes, mediated by calcium ions (Ca2+ ) and CaM. We propose that this Ca2+ /CaM-mediated signaling pathway may be an evolutionarily conserved mechanism that has been maintained from Drosophila to mammals, most likely in relation to its potential role in the broader context of cryptochrome function and regulation. Further, the understanding of cryptochrome interactions with other proteins and signaling pathways could lead to a better definition of its role within the intricate network of molecular interactions that govern circadian rhythms.


Assuntos
Cálcio , Criptocromos , Animais , Humanos , Criptocromos/metabolismo , Cálcio/metabolismo , Ritmo Circadiano/fisiologia , Drosophila/metabolismo , Transdução de Sinais , Mamíferos
4.
Molecules ; 28(3)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36770941

RESUMO

Trypanosoma brucei is a species of kinetoplastid causing sleeping sickness in humans and nagana in cows and horses. One of the peculiarities of this species of parasites is represented by their redox metabolism. One of the proteins involved in this redox machinery is the monothiol glutaredoxin 1 (1CGrx1) which is characterized by a unique disordered N-terminal extension exclusively conserved in trypanosomatids and other organisms. This region modulates the binding profile of the glutathione/trypanothione binding site, one of the functional regions of 1CGrx1. No endogenous ligands are known to bind this protein which does not present well-shaped binding sites, making it target particularly challenging to target. With the aim of targeting this peculiar system, we carried out two different screenings: (i) a fragment-based lead discovery campaign directed to the N-terminal as well as to the canonical binding site of 1CGrx1; (ii) a structure-based virtual screening directed to the 1CGrx1 canonical binding site. Here we report a small molecule that binds at the glutathione binding site in which the binding mode of the molecule was deeply investigated by Nuclear Magnetic Resonance (NMR). This compound represents an important step in the attempt to develop a novel strategy to interfere with the peculiar Trypanosoma Brucei redox system, making it possible to shed light on the perturbation of this biochemical machinery and eventually to novel therapeutic possibilities.


Assuntos
Trypanosoma brucei brucei , Trypanosoma , Tripanossomíase Africana , Humanos , Feminino , Animais , Bovinos , Cavalos , Trypanosoma brucei brucei/metabolismo , Glutarredoxinas/química , Trypanosoma/metabolismo , Tripanossomíase Africana/tratamento farmacológico , Glutationa/metabolismo
5.
Cell Death Dis ; 14(1): 54, 2023 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-36690622

RESUMO

The mitochondrial protein IF1 binds to the catalytic domain of the ATP synthase and inhibits ATP hydrolysis in ischemic tissues. Moreover, IF1 is overexpressed in many tumors and has been shown to act as a pro-oncogenic protein, although its mechanism of action is still debated. Here, we show that ATP5IF1 gene disruption in HeLa cells decreases colony formation in soft agar and tumor mass development in xenografts, underlining the role of IF1 in cancer. Notably, the lack of IF1 does not affect proliferation or oligomycin-sensitive mitochondrial respiration, but it sensitizes the cells to the opening of the permeability transition pore (PTP). Immunoprecipitation and proximity ligation analysis show that IF1 binds to the ATP synthase OSCP subunit in HeLa cells under oxidative phosphorylation conditions. The IF1-OSCP interaction is confirmed by NMR spectroscopy analysis of the recombinant soluble proteins. Overall, our results suggest that the IF1-OSCP interaction protects cancer cells from PTP-dependent apoptosis under normoxic conditions.


Assuntos
ATPases Mitocondriais Próton-Translocadoras , Neoplasias , Humanos , Células HeLa , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Mitocôndrias/metabolismo , Óxido Nítrico Sintase/metabolismo , Apoptose , Trifosfato de Adenosina/metabolismo , Neoplasias/patologia
6.
Nano Lett ; 22(22): 8875-8882, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36346924

RESUMO

Understanding the interactions between nanoparticles (NPs) and proteins is crucial for the successful application of NPs in biological contexts. Protein adsorption is dependent on particle size, and protein binding to ultrasmall (1-3 nm) NPs is considered to be generally weak. However, most studies have involved structured biomacromolecules, while the interactions of ultrasmall NPs with intrinsically disordered proteins (IDPs) have remained elusive. IDPs are abundant in eukaryotes and found to associate with NPs intracellularly. As a model system, we focused on ultrasmall gold nanoparticles (usGNPs) and tau, a cytosolic IDP associated with Alzheimer's disease. Using site-resolved NMR, steady-state fluorescence, calorimetry, and circular dichroism, we reveal that tau and usGNPs form stable multimolecular assemblies, representing a new type of nano-bio interaction. Specifically, the observed interaction hot spots explain the influence of usGNPs on tau conformational transitions, with implications for the intracellular targeting of aberrant IDP aggregation.


Assuntos
Proteínas Intrinsicamente Desordenadas , Nanopartículas Metálicas , Ouro/química , Proteínas Intrinsicamente Desordenadas/química , Ligação Proteica
7.
Front Mol Biosci ; 9: 906390, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35720133

RESUMO

CK2 is a Ser/Thr protein kinase involved in many cellular processes such as gene expression, cell cycle progression, cell growth and differentiation, embryogenesis, and apoptosis. Aberrantly high CK2 activity is widely documented in cancer, but the enzyme is also involved in several other pathologies, such as diabetes, inflammation, neurodegeneration, and viral infections, including COVID-19. Over the last years, a large number of small-molecules able to inhibit the CK2 activity have been reported, mostly acting with an ATP-competitive mechanism. Polyoxometalates (POMs), are metal-oxide polyanionic clusters of various structures and dimensions, with unique chemical and physical properties. POMs were identified as nanomolar CK2 inhibitors, but their mechanism of inhibition and CK2 binding site remained elusive. Here, we present the biochemical and biophysical characterizing of the interaction of CK2α with a ruthenium-based polyoxometalate, [Ru4(µ-OH)2(µ-O)4(H2O)4 (γ-SiW10O36)2]10- (Ru4POM), a potent inhibitor of CK2. Using analytical Size-Exclusion Chromatography (SEC), Isothermal Titration Calorimetry (ITC), and SAXS we were able to unravel the mechanism of inhibition of Ru4POM. Ru4POM binds to the positively-charged substrate binding region of the enzyme through electrostatic interactions, triggering the dimerization of the enzyme which consequently is inactivated. Ru4POM is the first non-peptide molecule showing a substrate-competitive mechanism of inhibition for CK2. On the basis of SAXS data, a structural model of the inactivated (CK2α)2(Ru4POM)2 complex is presented.

8.
Chem Sci ; 13(13): 3674-3687, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35432906

RESUMO

We report a fast-track computationally driven discovery of new SARS-CoV-2 main protease (Mpro) inhibitors whose potency ranges from mM for the initial non-covalent ligands to sub-µM for the final covalent compound (IC50 = 830 ± 50 nM). The project extensively relied on high-resolution all-atom molecular dynamics simulations and absolute binding free energy calculations performed using the polarizable AMOEBA force field. The study is complemented by extensive adaptive sampling simulations that are used to rationalize the different ligand binding poses through the explicit reconstruction of the ligand-protein conformation space. Machine learning predictions are also performed to predict selected compound properties. While simulations extensively use high performance computing to strongly reduce the time-to-solution, they were systematically coupled to nuclear magnetic resonance experiments to drive synthesis and for in vitro characterization of compounds. Such a study highlights the power of in silico strategies that rely on structure-based approaches for drug design and allows the protein conformational multiplicity problem to be addressed. The proposed fluorinated tetrahydroquinolines open routes for further optimization of Mpro inhibitors towards low nM affinities.

9.
Acta Crystallogr D Struct Biol ; 78(Pt 3): 363-378, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35234150

RESUMO

The SARS-CoV-2 main protease (Mpro) has a pivotal role in mediating viral genome replication and transcription of the coronavirus, making it a promising target for drugs against the COVID-19 pandemic. Here, a crystal structure is presented in which Mpro adopts an inactive state that has never been observed before, called new-inactive. It is shown that the oxyanion loop, which is involved in substrate recognition and enzymatic activity, adopts a new catalytically incompetent conformation and that many of the key interactions of the active conformation of the enzyme around the active site are lost. Solvation/desolvation energetic contributions play an important role in the transition from the inactive to the active state, with Phe140 moving from an exposed to a buried environment and Asn142 moving from a buried environment to an exposed environment. In new-inactive Mpro a new cavity is present near the S2' subsite, and the N-terminal and C-terminal tails, as well as the dimeric interface, are perturbed, with partial destabilization of the dimeric assembly. This novel conformation is relevant both for comprehension of the mechanism of action of Mpro within the catalytic cycle and for the successful structure-based drug design of antiviral drugs.


Assuntos
COVID-19/virologia , Proteases 3C de Coronavírus/química , SARS-CoV-2/química , Domínio Catalítico , Cristalografia por Raios X , Humanos , Modelos Moleculares , Conformação Proteica , Multimerização Proteica
10.
J Phys Chem B ; 125(49): 13366-13375, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34870419

RESUMO

Glutaredoxins are small proteins that share a common well-conserved thioredoxin-fold and participate in a wide variety of biological processes. Among them, class II Grx are redox-inactive proteins involved in iron-sulfur (Fe-S) metabolism. In the present work, we report different structural and dynamics aspects of 1CGrx1 from the pathogenic parasite Trypanosoma brucei that differentiate it from other orthologues by the presence of a parasite-specific unstructured N-terminal extension whose role has not been fully elucidated yet. Previous nuclear magnetic resonance (NMR) studies revealed significant differences with respect to the mutant lacking the disordered tail. Herein, we have performed atomistic molecular dynamics simulations that, complementary to NMR studies, confirm the intrinsically disordered nature of the N-terminal extension. Moreover, we confirm the main role of these residues in modulating the conformational dynamics of the glutathione-binding pocket. We observe that the N-terminal extension modifies the ligand cavity stiffening it by specific interactions that ultimately modulate its intrinsic flexibility, which may modify its role in the storage and/or transfer of preformed iron-sulfur clusters. These unique structural and dynamics aspects of Trypanosoma brucei 1CGrx1 differentiate it from other orthologues and could have functional relevance. In this way, our results encourage the study of other similar protein folding families with intrinsically disordered regions whose functional roles are still unrevealed and the screening of potential 1CGrx1 inhibitors as antitrypanosomal drug candidates.


Assuntos
Proteínas Intrinsicamente Desordenadas , Proteínas Ferro-Enxofre , Trypanosoma brucei brucei , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Humanos , Ligantes , Ligação Proteica , Dobramento de Proteína , Trypanosoma brucei brucei/metabolismo
11.
J Struct Biol ; 213(2): 107714, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33667636

RESUMO

SLC26A5 transporter prestin is fundamental for the higher hearing sensitivity and frequency selectivity of mammals. Prestin is a voltage-dependent transporter found in the cochlear outer hair cells responsible for their electromotility. Intracellular chloride binding is considered essential for voltage sensitivity and electromotility. Prestin is composed by a transmembrane domain and by a cytosolic domain called STAS. There is evidence of a calcium/calmodulin regulation of prestin mediated by the STAS domain. Using different biophysical techniques, namely SEC, CD, ITC, MST, NMR and SAXS, here we demonstrate and characterize the direct interaction between calmodulin and prestin STAS. We show that the interaction is calcium-dependent and that involves residues at the N-terminal end of the "variable loop". This is an intrinsically disordered insertion typical of the STAS domains of the SLC26 family of transporters whose function is still unclear. We derive a low-resolution model of the STAS/CaM complex, where only one lobe of calmodulin is engaged in the interaction, and build a model for the entire dimeric prestin in complex with CaM, which can use the unoccupied lobe to interact with other regions of prestin or with other regulatory proteins. We show that also a non-mammalian STAS can interact with calmodulin via the variable loop. These data start to shed light on the regulatory role of the STAS variable loop of prestin.


Assuntos
Calmodulina/metabolismo , Transportadores de Sulfato/química , Transportadores de Sulfato/metabolismo , Animais , Sítios de Ligação , Cálcio/metabolismo , Calmodulina/química , Galinhas , Cromatografia em Gel , Dicroísmo Circular , Espectroscopia de Ressonância Magnética , Conformação Proteica , Domínios Proteicos , Espalhamento a Baixo Ângulo , Difração de Raios X
12.
J Enzyme Inhib Med Chem ; 36(1): 1-14, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33115279

RESUMO

Fragment-based lead discovery (FBLD) is one of the most efficient methods to develop new drugs. We present here a new computational protocol called High-Throughput Supervised Molecular Dynamics (HT-SuMD), which makes it possible to automatically screen up to thousands of fragments, representing therefore a new valuable resource to prioritise fragments in FBLD campaigns. The protocol was applied to Bcl-XL, an oncological protein target involved in the regulation of apoptosis through protein-protein interactions. Initially, HT-SuMD performances were validated against a robust NMR-based screening, using the same set of 100 fragments. These independent results showed a remarkable agreement between the two methods. Then, a virtual screening on a larger library of additional 300 fragments was carried out and the best hits were validated by NMR. Remarkably, all the in silico selected fragments were confirmed as Bcl-XL binders. This represents, to date, the largest computational fragments screening entirely based on MD.


Assuntos
Simulação de Dinâmica Molecular , Bibliotecas de Moléculas Pequenas/química , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Ensaios de Triagem em Larga Escala , Humanos , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Bibliotecas de Moléculas Pequenas/farmacologia , Proteína bcl-X/antagonistas & inibidores , Proteína bcl-X/isolamento & purificação
13.
Biochim Biophys Acta Proteins Proteom ; 1867(11): 140254, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31344531

RESUMO

The neurodegenerative disease Friedreich ataxia results from a deficiency of frataxin, a mitochondrial protein. Most patients have a GAA expansion in the first intron of both alleles of frataxin gene, whereas a minority of them are heterozygous for the expansion and contain a mutation in the other allele. Frataxin has been claimed to participate in iron homeostasis and biosynthesis of FeS clusters, however its role in both pathways is not unequivocally defined. In this work we combined different advanced spectroscopic analyses to explore the iron-binding properties of human frataxin, as isolated and at the FeS clusters assembly machinery. For the first time we used EPR spectroscopy to address this key issue providing clear evidence of the formation of a complex with a low symmetry coordination of the metal ion. By 2D NMR, we confirmed that iron can be bound in both oxidation states, a controversial issue, and, in addition, we were able to point out a transient interaction of frataxin with a N-terminal 6his-tagged variant of ISCU, the scaffold protein of the FeS clusters assembly machinery. To obtain insights on structure/function relationships relevant to understand the disease molecular mechanism(s), we extended our studies to four clinical frataxin mutants. All variants showed a moderate to strong impairment in their ability to activate the FeS cluster assembly machinery in vitro, while keeping the same iron-binding features of the wild type protein. This supports the multifunctional nature of frataxin and the complex biochemical consequences of its mutations.


Assuntos
Ataxia de Friedreich , Proteínas de Ligação ao Ferro/química , Ferro/química , Mutação , Espectroscopia de Ressonância de Spin Eletrônica , Humanos , Ferro/metabolismo , Proteínas de Ligação ao Ferro/genética , Proteínas de Ligação ao Ferro/metabolismo , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Domínios Proteicos , Frataxina
14.
J Biol Chem ; 294(9): 3235-3248, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30593501

RESUMO

Trypanosomes are flagellated protozoan parasites (kinetoplastids) that have a unique redox metabolism based on the small dithiol trypanothione (T(SH)2). Although GSH may still play a biological role in trypanosomatid parasites beyond being a building block of T(SH)2, most of its functions are replaced by T(SH)2 in these organisms. Consequently, trypanosomes have several enzymes adapted to using T(SH)2 instead of GSH, including the glutaredoxins (Grxs). However, the mechanistic basis of Grx specificity for T(SH)2 is unknown. Here, we combined fast-kinetic and biophysical approaches, including NMR, MS, and fluorescent tagging, to study the redox function of Grx1, the only cytosolic redox-active Grx in trypanosomes. We observed that Grx1 reduces GSH-containing disulfides (including oxidized trypanothione) in very fast reactions (k > 5 × 105 m-1 s-1). We also noted that disulfides without a GSH are much slower oxidants, suggesting a strongly selective binding of the GSH molecule. Not surprisingly, oxidized Grx1 was also reduced very fast by T(SH)2 (4.8 × 106 m-1 s-1); however, GSH-mediated reduction was extremely slow (39 m-1 s-1). This kinetic selectivity in the reduction step of the catalytic cycle suggests that Grx1 uses preferentially a dithiol mechanism, forming a disulfide on the active site during the oxidative half of the catalytic cycle and then being rapidly reduced by T(SH)2 in the reductive half. Thus, the reduction of glutathionylated substrates avoids GSSG accumulation in an organism lacking GSH reductase. These findings suggest that Grx1 has played an important adaptive role during the rewiring of the thiol-redox metabolism of kinetoplastids.


Assuntos
Evolução Biológica , Glutarredoxinas/metabolismo , Compostos de Sulfidrila/metabolismo , Trypanosoma/metabolismo , Animais , Domínio Catalítico , Glutarredoxinas/química , Humanos , Cinética , Oxirredução
15.
Sci Rep ; 8(1): 13716, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30209332

RESUMO

Glutaredoxins (Grx) are small proteins conserved throughout all the kingdoms of life that are engaged in a wide variety of biological processes and share a common thioredoxin-fold. Among them, class II Grx are redox-inactive proteins involved in iron-sulfur (FeS) metabolism. They contain a single thiol group in their active site and use low molecular mass thiols such as glutathione as ligand for binding FeS-clusters. In this study, we investigated molecular aspects of 1CGrx1 from the pathogenic parasite Trypanosoma brucei brucei, a mitochondrial class II Grx that fulfills an indispensable role in vivo. Mitochondrial 1CGrx1 from trypanosomes differs from orthologues in several features including the presence of a parasite-specific N-terminal extension (NTE) whose role has yet to be elucidated. Previously we have solved the structure of a truncated form of 1CGrx1 containing only the conserved glutaredoxin domain but lacking the NTE. Our aim here is to investigate the effect of the NTE on the conformation of the protein. We therefore solved the NMR structure of the full-length protein, which reveals subtle but significant differences with the structure of the NTE-less form. By means of different experimental approaches, the NTE proved to be intrinsically disordered and not involved in the non-redox dependent protein dimerization, as previously suggested. Interestingly, the portion comprising residues 65-76 of the NTE modulates the conformational dynamics of the glutathione-binding pocket, which may play a role in iron-sulfur cluster assembly and delivery. Furthermore, we disclosed that the class II-strictly conserved loop that precedes the active site is critical for stabilizing the protein structure. So far, this represents the first communication of a Grx containing an intrinsically disordered region that defines a new protein subgroup within class II Grx.


Assuntos
Proteínas Ferro-Enxofre/metabolismo , Sequências Reguladoras de Ácido Nucleico/fisiologia , Enxofre/metabolismo , Trypanosoma brucei brucei/metabolismo , Trypanosoma/metabolismo , Sequência de Aminoácidos , Domínio Catalítico/fisiologia , Glutarredoxinas/metabolismo , Glutationa/metabolismo , Oxirredução , Conformação Proteica , Multimerização Proteica/fisiologia
16.
Front Mol Neurosci ; 11: 280, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30177872

RESUMO

Light is the main environmental stimulus that synchronizes the endogenous timekeeping systems in most terrestrial organisms. Drosophila cryptochrome (dCRY) is a light-responsive flavoprotein that detects changes in light intensity and wavelength around dawn and dusk. We have previously shown that dCRY acts through Inactivation No Afterpotential D (INAD) in a light-dependent manner on the Signalplex, a multiprotein complex that includes visual-signaling molecules, suggesting a role for dCRY in fly vision. Here, we predict and demonstrate a novel Ca2+-dependent interaction between dCRY and calmodulin (CaM). Through yeast two hybrid, coimmunoprecipitation (Co-IP), nuclear magnetic resonance (NMR) and calorimetric analyses we were able to identify and characterize a CaM binding motif in the dCRY C-terminus. Similarly, we also detailed the CaM binding site of the scaffold protein INAD and demonstrated that CaM bridges dCRY and INAD to form a ternary complex in vivo. Our results suggest a process whereby a rapid dCRY light response stimulates an interaction with INAD, which can be further consolidated by a novel mechanism regulated by CaM.

17.
Antioxid Redox Signal ; 28(6): 463-486, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29048199

RESUMO

SIGNIFICANCE: Major pathogenic enterobacteria and protozoan parasites from the phylum Euglenozoa, such as trypanosomatids, are endowed with glutathione (GSH)-spermidine (Sp) derivatives that play important roles in signaling and metal and thiol-redox homeostasis. For some Euglenozoa lineages, the GSH-Sp conjugates represent the main redox cosubstrates around which entire new redox systems have evolved. Several proteins underwent molecular adaptations to synthesize and utilize the new polyamine-based thiols. Recent Advances: The genomes of closely related organisms have recently been sequenced, which allows mining and analysis of gene sequences that belong to these peculiar redox systems. Similarly, the three-dimensional structures of several of these proteins have been solved, which allows for comparison with their counterparts in classical redox systems that rely on GSH/glutaredoxin and thioredoxin. CRITICAL ISSUES: The evolutionary and structural aspects related to the emergence and use of GSH-Sp conjugates in Euglenozoa are reviewed focusing on unique structural specializations that proteins developed to use N1,N8-bisglutathionylspermidine (trypanothione) as redox cosubstrate. An updated overview on the biochemical and biological significance of the major enzymatic activities is also provided. FUTURE DIRECTIONS: A thiol-redox system strictly dependent on trypanothione is a feature unique to trypanosomatids. The physicochemical properties of the polyamine-GSH conjugates were a major driving force for structural adaptation of proteins that use these thiols as ligand and redox cofactor. In fact, the structural differences of indispensable components of this system can be exploited toward selective drug development. Future research should clarify whether additional cellular processes are regulated by the trypanothione system. Antioxid. Redox Signal. 28, 463-486.


Assuntos
Glutarredoxinas/genética , Compostos de Sulfidrila/química , Tiorredoxinas/genética , Trypanosomatina/metabolismo , Evolução Molecular , Glutarredoxinas/química , Glutarredoxinas/metabolismo , Oxirredução , Poliaminas/química , Poliaminas/metabolismo , Espermidina/química , Espermidina/metabolismo , Compostos de Sulfidrila/metabolismo , Tiorredoxinas/química , Tiorredoxinas/metabolismo , Trypanosomatina/química , Trypanosomatina/genética
18.
J Biomol Struct Dyn ; 35(12): 2736-2744, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27581488

RESUMO

Many cysteine-stabilized antimicrobial peptides from a variety of living organisms could be good candidates for the development of anti-infective agents. In the absence of experimentally obtained structural data, peptide modeling is an essential tool for understanding structure-activity relationships and for optimizing the bioactive moieties. Focusing on cysteine-rich peptide structures, we reproduced the case of structure predictions in the so-called midnight zone. We developed our protocol on a training set derived by clustering the available cysteine-stabilized αß (CSαß) structures in nine different representative families and tested it on peptides randomly selected from each family. Starting from draft models, we tested a structure-based disulfide predictor and we used cysteine distances as constraints during molecular dynamics. Finally, we proposed an analysis for final structure selection. Accordingly, we obtained a mean root mean square deviation improvement of 21% for the test set. Our findings demonstrate that it is possible to predict the network of disulfide bridges in cysteine-stabilized peptides and to use this result to improve the accuracy of structural predictions. Finally, we applied the methods to predict the structure of royalisin, a cysteine-rich peptide with unknown structure.


Assuntos
Ciclotídeos/química , Cisteína/química , Dissulfetos/química , Simulação de Dinâmica Molecular , Proteínas/química , Animais , Abelhas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular , Relação Estrutura-Atividade , Viola/metabolismo
19.
Chemistry ; 23(10): 2405-2422, 2017 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-27935210

RESUMO

The oxidation of organic phenylselenides by H2 O2 is investigated in model compounds, namely, n-butyl phenyl selenide (PhSe(nBu)), bis(phenylselanyl)methane (PhSeMeSePh), diphenyl diselenide (PhSeSePh), and 1,2-bis(phenylselanyl)ethane (PhSeEtSePh). Through a combined experimental (1 H and 77 Se NMR) and computational approach, we characterize the direct oxidation of monoselenide to selenoxide, the stepwise double oxidation of PhSeMeSePh that leads to different diastereomeric diselenoxides, the complete oxidation of the diphenyldiselenide that leads to selenium-selenium bond cleavage, and the subsequent formation of the phenylseleninic product. The oxidation of PhSeEtSePh also results in the formation of phenylseleninic acid along with 1-(vinylseleninyl)benzene, which is derived from a side elimination reaction. The evidence of a direct mechanism, in addition to an autocatalytic mechanism that emerges from kinetic studies, is discussed. By considering our observations of diselenides with chalcogen atoms that are separated by alkyl spacers of different length, a rationale for the advantage of diselenide versus monoselenide catalysts is presented.

20.
Biomol NMR Assign ; 10(1): 85-8, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26386962

RESUMO

Trypanosomatids are parasites responsible for several tropical and subtropical diseases, such as Chaga's disease, sleeping sickness and Leishmaniasis. In contrast to the mammalian host, the thiol-redox metabolism of these pathogens depends on trypanothione [bis-glutathionylspermidine, T(SH)2] instead of glutathione (GSH) providing a set of lineage-specific proteins as drug target candidates. Glutaredoxins (Grx) are ubiquitous small thiol-disulfide oxidoreductases that belong to the thioredoxin-fold family. They play a central role in redox homeostasis and iron sulfur-cluster biogenesis. Each species, including trypanosomes, possesses its own set of isoforms distributed in different subcellular compartments. The genome of trypanosomatids encodes for two class I (dithiolic) Grxs named 2-C-Grx1 and 2-C-Grx2. Both proteins were shown to efficiently reduce different disulfides at the expenses of T(SH)2 using a mechanism that involves the two cysteines in the active site. Moreover, the cytosolic Trypanosoma brucei 2-C-Grx1 but not the mitochondrial 2-C-Grx2 was able to coordinate an iron-sulfur cluster with T(SH)2 or GSH as ligand. As a first step to unravel the structural basis for the specificity observed in the trypanosomal glutaredoxins, we present here the NMR resonance assignment of 2-C-Grx1 from the parasite T. brucei brucei.


Assuntos
Citosol/metabolismo , Glutarredoxinas/química , Ressonância Magnética Nuclear Biomolecular , Tolueno/análogos & derivados , Trypanosoma brucei brucei/metabolismo , Sequência de Aminoácidos , Isótopos de Carbono , Domínio Catalítico , Humanos , Isótopos de Nitrogênio , Estrutura Secundária de Proteína , Tolueno/química , Tolueno/metabolismo , Trítio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...