Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Persoonia ; 50: 158-310, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38567263

RESUMO

Novel species of fungi described in this study include those from various countries as follows: Australia, Aschersonia mackerrasiae on whitefly, Cladosporium corticola on bark of Melaleuca quinquenervia, Penicillium nudgee from soil under Melaleuca quinquenervia, Pseudocercospora blackwoodiae on leaf spot of Persoonia falcata, and Pseudocercospora dalyelliae on leaf spot of Senna alata. Bolivia, Aspicilia lutzoniana on fully submersed siliceous schist in high-mountain streams, and Niesslia parviseta on the lower part and apothecial discs of Erioderma barbellatum on a twig. Brazil, Cyathus bonsai on decaying wood, Geastrum albofibrosum from moist soil with leaf litter, Laetiporus pratigiensis on a trunk of a living unknown hardwood tree species, and Scytalidium synnematicum on dead twigs of unidentified plant. Bulgaria, Amanita abscondita on sandy soil in a plantation of Quercus suber. Canada, Penicillium acericola on dead bark of Acer saccharum, and Penicillium corticola on dead bark of Acer saccharum. China, Colletotrichum qingyuanense on fruit lesion of Capsicum annuum. Denmark, Helminthosphaeria leptospora on corticioid Neohypochnicium cremicolor. Ecuador (Galapagos), Phaeosphaeria scalesiae on Scalesia sp. Finland, Inocybe jacobssonii on calcareous soils in dry forests and park habitats. France, Cortinarius rufomyrrheus on sandy soil under Pinus pinaster, and Periconia neominutissima on leaves of Poaceae. India, Coprinopsis fragilis on decaying bark of logs, Filoboletus keralensis on unidentified woody substrate, Penicillium sankaranii from soil, Physisporinus tamilnaduensis on the trunk of Azadirachta indica, and Poronia nagaraholensis on elephant dung. Iran, Neosetophoma fici on infected leaves of Ficus elastica. Israel, Cnidariophoma eilatica (incl. Cnidariophoma gen. nov.) from Stylophora pistillata. Italy, Lyophyllum obscurum on acidic soil. Namibia, Aureobasidium faidherbiae on dead leaf of Faidherbia albida, and Aureobasidium welwitschiae on dead leaves of Welwitschia mirabilis. Netherlands, Gaeumannomycella caricigena on dead culms of Carex elongata, Houtenomyces caricicola (incl. Houtenomyces gen. nov.) on culms of Carex disticha, Neodacampia ulmea (incl. Neodacampia gen. nov.) on branch of Ulmus laevis, Niesslia phragmiticola on dead standing culms of Phragmites australis, Pseudopyricularia caricicola on culms of Carex disticha, and Rhodoveronaea nieuwwulvenica on dead bamboo sticks. Norway, Arrhenia similis half-buried and moss-covered pieces of rotting wood in grass-grown path. Pakistan, Mallocybe ahmadii on soil. Poland, Beskidomyces laricis (incl. Beskidomyces gen. nov.) from resin of Larix decidua ssp. polonica, Lapidomyces epipinicola from sooty mould community on Pinus nigra, and Leptographium granulatum from a gallery of Dendroctonus micans on Picea abies. Portugal, Geoglossum azoricum on mossy areas of laurel forest areas planted with Cryptomeria japonica, and Lunasporangiospora lusitanica from a biofilm covering a biodeteriorated limestone wall. Qatar, Alternaria halotolerans from hypersaline sea water, and Alternaria qatarensis from water sample collected from hypersaline lagoon. South Africa, Alfaria thamnochorti on culm of Thamnochortus fraternus, Knufia aloeicola on Aloe gariepensis, Muriseptatomyces restionacearum (incl. Muriseptatomyces gen. nov.) on culms of Restionaceae, Neocladosporium arctotis on nest of cases of bag worm moths (Lepidoptera, Psychidae) on Arctotis auriculata, Neodevriesia scadoxi on leaves of Scadoxus puniceus, Paraloratospora schoenoplecti on stems of Schoenoplectus lacustris, Tulasnella epidendrea from the roots of Epidendrum × obrienianum, and Xenoidriella cinnamomi (incl. Xenoidriella gen. nov.) on leaf of Cinnamomum camphora. South Korea, Lemonniera fraxinea on decaying leaves of Fraxinus sp. from pond. Spain, Atheniella lauri on the bark of fallen trees of Laurus nobilis, Halocryptovalsa endophytica from surface-sterilised, asymptomatic roots of Salicornia patula, Inocybe amygdaliolens on soil in mixed forest, Inocybe pityusarum on calcareous soil in mixed forest, Inocybe roseobulbipes on acidic soils, Neonectria borealis from roots of Vitis berlandieri × Vitis rupestris, Sympoventuria eucalyptorum on leaves of Eucalyptus sp., and Tuber conchae from soil. Sweden, Inocybe bidumensis on calcareous soil. Thailand, Cordyceps sandindaengensis on Lepidoptera pupa, buried in soil, Ophiocordyceps kuchinaraiensis on Coleoptera larva, buried in soil, and Samsoniella winandae on Lepidoptera pupa, buried in soil. Taiwan region (China), Neophaeosphaeria livistonae on dead leaf of Livistona rotundifolia. Türkiye, Melanogaster anatolicus on clay loamy soils. UK, Basingstokeomyces allii (incl. Basingstokeomyces gen. nov.) on leaves of Allium schoenoprasum. Ukraine, Xenosphaeropsis corni on recently dead stem of Cornus alba. USA, Nothotrichosporon aquaticum (incl. Nothotrichosporon gen. nov.) from water, and Periconia philadelphiana from swab of coil surface. Morphological and culture characteristics for these new taxa are supported by DNA barcodes. Citation: Crous PW, Osieck ER, Shivas RG, et al. 2023. Fungal Planet description sheets: 1478-1549. Persoonia 50: 158- 310. https://doi.org/10.3767/persoonia.2023.50.05.

2.
Persoonia ; 48: 261-371, 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38234686

RESUMO

Novel species of fungi described in this study include those from various countries as follows: Australia, Agaricus albofoetidus, Agaricus aureoelephanti and Agaricus parviumbrus on soil, Fusarium ramsdenii from stem cankers of Araucaria cunninghamii, Keissleriella sporoboli from stem of Sporobolus natalensis, Leptosphaerulina queenslandica and Pestalotiopsis chiaroscuro from leaves of Sporobolus natalensis, Serendipita petricolae as endophyte from roots of Eriochilus petricola, Stagonospora tauntonensis from stem of Sporobolus natalensis, Teratosphaeria carnegiei from leaves of Eucalyptus grandis × E. camaldulensis and Wongia ficherai from roots of Eragrostis curvula. Canada, Lulworthia fundyensis from intertidal wood and Newbrunswickomyces abietophilus (incl. Newbrunswickomyces gen. nov.) on buds of Abies balsamea. Czech Republic, Geosmithia funiculosa from a bark beetle gallery on Ulmus minor and Neoherpotrichiella juglandicola (incl. Neoherpotrichiella gen. nov.) from wood of Juglans regia. France, Aspergillus rouenensis and Neoacrodontium gallica (incl. Neoacrodontium gen. nov.) from bore dust of Xestobium rufovillosum feeding on Quercus wood, Endoradiciella communis (incl. Endoradiciella gen. nov.) endophytic in roots of Microthlaspi perfoliatum and Entoloma simulans on soil. India, Amanita konajensis on soil and Keithomyces indicus from soil. Israel, Microascus rothbergiorum from Stylophora pistillata. Italy, Calonarius ligusticus on soil. Netherlands, Appendopyricularia juncicola (incl. Appendopyricularia gen. nov.), Eriospora juncicola and Tetraploa juncicola on dead culms of Juncus effusus, Gonatophragmium physciae on Physcia caesia and Paracosmospora physciae (incl. Paracosmospora gen. nov.) on Physcia tenella, Myrmecridium phragmitigenum on dead culm of Phragmites australis, Neochalara lolae on stems of Pteridium aquilinum, Niesslia nieuwwulvenica on dead culm of undetermined Poaceae, Nothodevriesia narthecii (incl. Nothodevriesia gen. nov.) on dead leaves of Narthecium ossifragum and Parastenospora pini (incl. Parastenospora gen. nov.) on dead twigs of Pinus sylvestris. Norway, Verticillium bjoernoeyanum from sand grains attached to a piece of driftwood on a sandy beach. Portugal, Collybiopsis cimrmanii on the base of living Quercus ilex and amongst dead leaves of Laurus and herbs. South Africa, Paraproliferophorum hyphaenes (incl. Paraproliferophorum gen. nov.) on living leaves of Hyphaene sp. and Saccothecium widdringtoniae on twigs of Widdringtonia wallichii. Spain, Cortinarius dryosalor on soil, Cyphellophora endoradicis endophytic in roots of Microthlaspi perfoliatum, Geoglossum lauri-silvae on soil, Leptographium gemmatum from fluvial sediments, Physalacria auricularioides from a dead twig of Castanea sativa, Terfezia bertae and Tuber davidlopezii in soil. Sweden, Alpova larskersii, Inocybe alpestris and Inocybe boreogodeyi on soil. Thailand, Russula banwatchanensis, Russula purpureoviridis and Russula lilacina on soil. Ukraine, Nectriella adonidis on overwintered stems of Adonis vernalis. USA, Microcyclus jacquiniae from living leaves of Jacquinia keyensis and Penicillium neoherquei from a minute mushroom sporocarp. Morphological and culture characteristics are supported by DNA barcodes. Citation: Crous PW, Boers J, Holdom D, et al. 2022. Fungal Planet description sheets: 1383-1435. Persoonia 48: 261-371. https://doi.org/10.3767/persoonia.2022.48.08.

3.
Persoonia ; 46: 272-312, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35935889

RESUMO

As currently delineated, Hygrophorus sect. Olivaceoumbrini is a polyphyletic assembly within subg. Colorati, encompassing glutinous and pigmented taxa. According to available literature, between a dozen and twenty species may belong in the section, mostly represented in continental and boreal forests of Europe and North America. However, the limited phylogenetic and biogeographic coverage of the genus does not presently allow for a reliable assessment of its taxonomic boundaries, nor does it provide a complete picture of species diversity within sect. Olivaceoumbrini. In an ongoing effort to confer an evolutionary backbone to Hygrophorus systematics, we assembled and analysed a dataset comprising 268 intercontinental sequences, including holotypes of 7 taxa previously not positioned phylogenetically, and enriched with collections from largely unexplored Mediterranean and Anatolian ecosystems. Overall, 30 clades are identified within 5 distinct lineages, including 11 species putatively new to science. Seven of these are formally described here as H. agathosmoides, H. albofloccosus, H. canadensis, H. limosus, H. marcocontui, H. pinophilus and H. pustulatoides spp. nov. This enriched coverage of section Olivaceoumbrini s.lat. calls for a re-evaluation of its natural boundaries into a core monophyletic clade, including H. olivaceoalbus and five closely related lookalikes, as well as the assignment of the section rank to the four remaining lineages: sect. Fuscocinerei sect. nov., sect. Limacini sect. nov., sect. Nudolidi sect. nov. and sect. Tephroleuci, respectively. We also stabilize the usage of six historical names, H. glutinifer, H. hyacinthinus, H. mesotephrus, H. olivaceoalbus, H. pustulatus and H. tephroleucus, through designation of two neotypes, three lectotypes and four epitypes. Citation: Bellanger J-M, Lebeuf R, Sesli E, et al. 2021. Hygrophorus sect. Olivaceoumbrini: new boundaries, extended biogeography and unexpected diversity unravelled by transatlantic studies. Persoonia 46: 272-312. https://doi.org/10.3767/persoonia.2021.46.10.

4.
Persoonia ; 46: 188-215, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35935890

RESUMO

Molecular phylogenies in the past decade have demonstrated that the described diversity of Cortinarius is still underestimated, especially outside continental and boreal ecoregions where the genus has been historically investigated. We tackled this issue by revisiting the so far unresolved subgenus Leprocybe, and focused on the largely unexplored Mediterranean hotspot of biodiversity. The sequencing and phylogenetic analysis of 161 vouchered collections from Austria, Cyprus, France, Germany, Italy and Spain, including 16 types, allowed for the delineation of 11 species in this lineage, three of them recognised as new to science and formally introduced as C. jimenezianus, C. selinolens and C. viridans spp. nov., respectively. Interestingly, the newly described species exhibit a strict Mediterranean distribution, and one of them is putatively endemic to the island of Cyprus, highlighting the remarkable potential of this neglected ecoregion to uncover further undescribed diversity of Cortinarius in the future. The present work also unveils 23 synonymies in this subgenus, as well as previously undetected crypticism within C. venetus. Next Generation Sequencing carried out on three old and contaminated holotypes, successfully decrypts their phylogenetic identity, including that of C. leproleptopus, finally settling the long-standing controversy over the taxonomic status of this species. A brief overview of each species in the subgenus is lastly provided and a key is proposed to facilitate the identification of presently known European taxa of Leprocybe in the field. Citation: Bidaud A, Loizides M, Armada F, et al. 2021. Cortinarius subgenus Leprocybe in Europe: expanded Sanger and Next Generation Sequencing unveil unexpected diversity in the Mediterranean. Persoonia 46: 188-215. https://doi.org/10.3767/persoonia.2021.46.07.

5.
Persoonia ; 47: 178-374, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37693795

RESUMO

Novel species of fungi described in this study include those from various countries as follows: Antartica, Cladosporium austrolitorale from coastal sea sand. Australia, Austroboletus yourkae on soil, Crepidotus innuopurpureus on dead wood, Curvularia stenotaphri from roots and leaves of Stenotaphrum secundatum and Thecaphora stajsicii from capsules of Oxalis radicosa. Belgium, Paraxerochrysium coryli (incl. Paraxerochrysium gen. nov.) from Corylus avellana. Brazil, Calvatia nordestina on soil, Didymella tabebuiicola from leaf spots on Tabebuia aurea, Fusarium subflagellisporum from hypertrophied floral and vegetative branches of Mangifera indica and Microdochium maculosum from living leaves of Digitaria insularis. Canada, Cuphophyllus bondii from a grassland. Croatia, Mollisia inferiseptata from a rotten Laurus nobilis trunk. Cyprus, Amanita exilis on calcareous soil. Czech Republic, Cytospora hippophaicola from wood of symptomatic Vaccinium corymbosum. Denmark, Lasiosphaeria deviata on pieces of wood and herbaceous debris. Dominican Republic, Calocybella goethei among grass on a lawn. France (Corsica), Inocybe corsica on wet ground. France (French Guiana), Trechispora patawaensis on decayed branch of unknown angiosperm tree and Trechispora subregularis on decayed log of unknown angiosperm tree. Germany, Paramicrothecium sambuci (incl. Paramicrothecium gen. nov.) on dead stems of Sambucus nigra. India, Aureobasidium microtermitis from the gut of a Microtermes sp. termite, Laccaria diospyricola on soil and Phylloporia tamilnadensis on branches of Catunaregam spinosa. Iran, Pythium serotinoosporum from soil under Prunus dulcis. Italy, Pluteus brunneovenosus on twigs of broadleaved trees on the ground. Japan, Heterophoma rehmanniae on leaves of Rehmannia glutinosa f. hueichingensis. Kazakhstan, Murispora kazachstanica from healthy roots of Triticum aestivum. Namibia, Caespitomonium euphorbiae (incl. Caespitomonium gen. nov.) from stems of an Euphorbia sp. Netherlands, Alfaria junci, Myrmecridium junci, Myrmecridium juncicola, Myrmecridium juncigenum, Ophioceras junci, Paradinemasporium junci (incl. Paradinemasporium gen. nov.), Phialoseptomonium junci, Sporidesmiella juncicola, Xenopyricularia junci and Zaanenomyces quadripartis (incl. Zaanenomyces gen. nov.), from dead culms of Juncus effusus, Cylindromonium everniae and Rhodoveronaea everniae from Evernia prunastri, Cyphellophora sambuci and Myrmecridium sambuci from Sambucus nigra, Kiflimonium junci, Sarocladium junci, Zaanenomyces moderatricis-academiae and Zaanenomyces versatilis from dead culms of Juncus inflexus, Microcera physciae from Physcia tenella, Myrmecridium dactylidis from dead culms of Dactylis glomerata, Neochalara spiraeae and Sporidesmium spiraeae from leaves of Spiraea japonica, Neofabraea salicina from Salix sp., Paradissoconium narthecii (incl. Paradissoconium gen. nov.) from dead leaves of Narthecium ossifragum, Polyscytalum vaccinii from Vaccinium myrtillus, Pseudosoloacrosporiella cryptomeriae (incl. Pseudosoloacrosporiella gen. nov.) from leaves of Cryptomeria japonica, Ramularia pararhabdospora from Plantago lanceolata, Sporidesmiella pini from needles of Pinus sylvestris and Xenoacrodontium juglandis (incl. Xenoacrodontium gen. nov. and Xenoacrodontiaceae fam. nov.) from Juglans regia. New Zealand, Cryptometrion metrosideri from twigs of Metrosideros sp., Coccomyces pycnophyllocladi from dead leaves of Phyllocladus alpinus, Hypoderma aliforme from fallen leaves Fuscopora solandri and Hypoderma subiculatum from dead leaves Phormium tenax. Norway, Neodevriesia kalakoutskii from permafrost and Variabilispora viridis from driftwood of Picea abies. Portugal, Entomortierella hereditatis from a biofilm covering a deteriorated limestone wall. Russia, Colpoma junipericola from needles of Juniperus sabina, Entoloma cinnamomeum on soil in grasslands, Entoloma verae on soil in grasslands, Hyphodermella pallidostraminea on a dry dead branch of Actinidia sp., Lepiota sayanensis on litter in a mixed forest, Papiliotrema horticola from Malus communis, Paramacroventuria ribis (incl. Paramacroventuria gen. nov.) from leaves of Ribes aureum and Paramyrothecium lathyri from leaves of Lathyrus tuberosus. South Africa, Harzia combreti from leaf litter of Combretum collinum ssp. sulvense, Penicillium xyleborini from Xyleborinus saxesenii, Phaeoisaria dalbergiae from bark of Dalbergia armata, Protocreopsis euphorbiae from leaf litter of Euphorbia ingens and Roigiella syzygii from twigs of Syzygium chordatum. Spain, Genea zamorana on sandy soil, Gymnopus nigrescens on Scleropodium touretii, Hesperomyces parexochomi on Parexochomus quadriplagiatus, Paraphoma variabilis from dung, Phaeococcomyces kinklidomatophilus from a blackened metal railing of an industrial warehouse and Tuber suaveolens in soil under Quercus faginea. Svalbard and Jan Mayen, Inocybe nivea associated with Salix polaris. Thailand, Biscogniauxia whalleyi on corticated wood. UK, Parasitella quercicola from Quercus robur. USA, Aspergillus arizonicus from indoor air in a hospital, Caeliomyces tampanus (incl. Caeliomyces gen. nov.) from office dust, Cippumomyces mortalis (incl. Cippumomyces gen. nov.) from a tombstone, Cylindrium desperesense from air in a store, Tetracoccosporium pseudoaerium from air sample in house, Toxicocladosporium glendoranum from air in a brick room, Toxicocladosporium losalamitosense from air in a classroom, Valsonectria portsmouthensis from air in men's locker room and Varicosporellopsis americana from sludge in a water reservoir. Vietnam, Entoloma kovalenkoi on rotten wood, Fusarium chuoi inside seed of Musa itinerans, Micropsalliota albofelina on soil in tropical evergreen mixed forests and Phytophthora docyniae from soil and roots of Docynia indica. Morphological and culture characteristics are supported by DNA barcodes. Citation: Crous PW, Osieck ER, Jurjevic Z, et al. 2021. Fungal Planet description sheets: 1284-1382. Persoonia 47: 178-374. https://doi.org/10.3767/persoonia.2021.47.06.

6.
Persoonia ; 47: 178-374, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38352974

RESUMO

Novel species of fungi described in this study include those from various countries as follows: Antartica, Cladosporium austrolitorale from coastal sea sand. Australia, Austroboletus yourkae on soil, Crepidotus innuopurpureus on dead wood, Curvularia stenotaphri from roots and leaves of Stenotaphrum secundatum and Thecaphora stajsicii from capsules of Oxalis radicosa. Belgium, Paraxerochrysium coryli (incl. Paraxerochrysium gen. nov.) from Corylus avellana. Brazil, Calvatia nordestina on soil, Didymella tabebuiicola from leaf spots on Tabebuia aurea, Fusarium subflagellisporum from hypertrophied floral and vegetative branches of Mangifera indica and Microdochium maculosum from living leaves of Digitaria insularis. Canada, Cuphophyllus bondii from a grassland. Croatia, Mollisia inferiseptata from a rotten Laurus nobilis trunk. Cyprus, Amanita exilis on calcareous soil. Czech Republic, Cytospora hippophaicola from wood of symptomatic Vaccinium corymbosum. Denmark, Lasiosphaeria deviata on pieces of wood and herbaceous debris. Dominican Republic, Calocybella goethei among grass on a lawn. France (Corsica), Inocybe corsica on wet ground. France (French Guiana), Trechispora patawaensis on decayed branch of unknown angiosperm tree and Trechispora subregularis on decayed log of unknown angiosperm tree. Germany, Paramicrothecium sambuci (incl. Paramicrothecium gen. nov.) on dead stems of Sambucus nigra. India, Aureobasidium microtermitis from the gut of a Microtermes sp. termite, Laccaria diospyricola on soil and Phylloporia tamilnadensis on branches of Catunaregam spinosa. Iran, Pythium serotinoosporum from soil under Prunus dulcis. Italy, Pluteus brunneovenosus on twigs of broadleaved trees on the ground. Japan, Heterophoma rehmanniae on leaves of Rehmannia glutinosa f. hueichingensis. Kazakhstan, Murispora kazachstanica from healthy roots of Triticum aestivum. Namibia, Caespitomonium euphorbiae (incl. Caespitomonium gen. nov.) from stems of an Euphorbia sp. Netherlands, Alfaria junci, Myrmecridium junci, Myrmecridium juncicola, Myrmecridium juncigenum, Ophioceras junci, Paradinemasporium junci (incl. Paradinemasporium gen. nov.), Phialoseptomonium junci, Sporidesmiella juncicola, Xenopyricularia junci and Zaanenomyces quadripartis (incl. Zaanenomyces gen. nov.), from dead culms of Juncus effusus, Cylindromonium everniae and Rhodoveronaea everniae from Evernia prunastri, Cyphellophora sambuci and Myrmecridium sambuci from Sambucus nigra, Kiflimonium junci, Sarocladium junci, Zaanenomyces moderatricis-academiae and Zaanenomyces versatilis from dead culms of Juncus inflexus, Microcera physciae from Physcia tenella, Myrmecridium dactylidis from dead culms of Dactylis glomerata, Neochalara spiraeae and Sporidesmium spiraeae from leaves of Spiraea japonica, Neofabraea salicina from Salix sp., Paradissoconium narthecii (incl. Paradissoconium gen. nov.) from dead leaves of Narthecium ossifragum, Polyscytalum vaccinii from Vaccinium myrtillus, Pseudosoloacrosporiella cryptomeriae (incl. Pseudosoloacrosporiella gen. nov.) from leaves of Cryptomeria japonica, Ramularia pararhabdospora from Plantago lanceolata, Sporidesmiella pini from needles of Pinus sylvestris and Xenoacrodontium juglandis (incl. Xenoacrodontium gen. nov. and Xenoacrodontiaceae fam. nov.) from Juglans regia. New Zealand, Cryptometrion metrosideri from twigs of Metrosideros sp., Coccomyces pycnophyllocladi from dead leaves of Phyllocladus alpinus, Hypoderma aliforme from fallen leaves Fuscopora solandri and Hypoderma subiculatum from dead leaves Phormium tenax. Norway, Neodevriesia kalakoutskii from permafrost and Variabilispora viridis from driftwood of Picea abies. Portugal, Entomortierella hereditatis from a biofilm covering a deteriorated limestone wall. Russia, Colpoma junipericola from needles of Juniperus sabina, Entoloma cinnamomeum on soil in grasslands, Entoloma verae on soil in grasslands, Hyphodermella pallidostraminea on a dry dead branch of Actinidia sp., Lepiota sayanensis on litter in a mixed forest, Papiliotrema horticola from Malus communis, Paramacroventuria ribis (incl. Paramacroventuria gen. nov.) from leaves of Ribes aureum and Paramyrothecium lathyri from leaves of Lathyrus tuberosus. South Africa, Harzia combreti from leaf litter of Combretum collinum ssp. sulvense, Penicillium xyleborini from Xyleborinus saxesenii, Phaeoisaria dalbergiae from bark of Dalbergia armata, Protocreopsis euphorbiae from leaf litter of Euphorbia ingens and Roigiella syzygii from twigs of Syzygium chordatum. Spain, Genea zamorana on sandy soil, Gymnopus nigrescens on Scleropodium touretii, Hesperomyces parexochomi on Parexochomus quadriplagiatus, Paraphoma variabilis from dung, Phaeococcomyces kinklidomatophilus from a blackened metal railing of an industrial warehouse and Tuber suaveolens in soil under Quercus faginea. Svalbard and Jan Mayen, Inocybe nivea associated with Salix polaris. Thailand, Biscogniauxia whalleyi on corticated wood. UK, Parasitella quercicola from Quercus robur. USA, Aspergillus arizonicus from indoor air in a hospital, Caeliomyces tampanus (incl. Caeliomyces gen. nov.) from office dust, Cippumomyces mortalis (incl. Cippumomyces gen. nov.) from a tombstone, Cylindrium desperesense from air in a store, Tetracoccosporium pseudoaerium from air sample in house, Toxicocladosporium glendoranum from air in a brick room, Toxicocladosporium losalamitosense from air in a classroom, Valsonectria portsmouthensis from air in men's locker room and Varicosporellopsis americana from sludge in a water reservoir. Vietnam, Entoloma kovalenkoi on rotten wood, Fusarium chuoi inside seed of Musa itinerans, Micropsalliota albofelina on soil in tropical evergreen mixed forests and Phytophthora docyniae from soil and roots of Docynia indica. Morphological and culture characteristics are supported by DNA barcodes. Citation: Crous PW, Osieck ER, Jurjevic Z, et al. 2021. Fungal Planet description sheets: 1284-1382. Persoonia 47: 178-374. https://doi.org/10.3767/persoonia.2021.47.06.

7.
Persoonia ; 42: 291-473, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31551622

RESUMO

Novel species of fungi described in this study include those from various countries as follows: Australia, Chaetomella pseudocircinoseta and Coniella pseudodiospyri on Eucalyptus microcorys leaves, Cladophialophora eucalypti, Teratosphaeria dunnii and Vermiculariopsiella dunnii on Eucalyptus dunnii leaves, Cylindrium grande and Hypsotheca eucalyptorum on Eucalyptus grandis leaves, Elsinoe salignae on Eucalyptus saligna leaves, Marasmius lebeliae on litter of regenerating subtropical rainforest, Phialoseptomonium eucalypti (incl. Phialoseptomonium gen. nov.) on Eucalyptus grandis × camaldulensis leaves, Phlogicylindrium pawpawense on Eucalyptus tereticornis leaves, Phyllosticta longicauda as an endophyte from healthy Eustrephus latifolius leaves, Pseudosydowia eucalyptorum on Eucalyptus sp. leaves, Saitozyma wallum on Banksia aemula leaves, Teratosphaeria henryi on Corymbia henryi leaves. Brazil, Aspergillus bezerrae, Backusella azygospora, Mariannaea terricola and Talaromyces pernambucoensis from soil, Calonectria matogrossensis on Eucalyptus urophylla leaves, Calvatia brasiliensis on soil, Carcinomyces nordestinensis on Bromelia antiacantha leaves, Dendryphiella stromaticola on small branches of an unidentified plant, Nigrospora brasiliensis on Nopalea cochenillifera leaves, Penicillium alagoense as a leaf endophyte on a Miconia sp., Podosordaria nigrobrunnea on dung, Spegazzinia bromeliacearum as a leaf endophyte on Tilandsia catimbauensis, Xylobolus brasiliensis on decaying wood. Bulgaria, Kazachstania molopis from the gut of the beetle Molops piceus. Croatia, Mollisia endocrystallina from a fallen decorticated Picea abies tree trunk. Ecuador, Hygrocybe rodomaculata on soil. Hungary, Alfoldia vorosii (incl. Alfoldia gen. nov.) from Juniperus communis roots, Kiskunsagia ubrizsyi (incl. Kiskunsagia gen. nov.) from Fumana procumbens roots. India, Aureobasidium tremulum as laboratory contaminant, Leucosporidium himalayensis and Naganishia indica from windblown dust on glaciers. Italy, Neodevriesia cycadicola on Cycas sp. leaves, Pseudocercospora pseudomyrticola on Myrtus communis leaves, Ramularia pistaciae on Pistacia lentiscus leaves, Neognomoniopsis quercina (incl. Neognomoniopsis gen. nov.) on Quercus ilex leaves. Japan, Diaporthe fructicola on Passiflora edulis × P. edulis f. flavicarpa fruit, Entoloma nipponicum on leaf litter in a mixed Cryptomeria japonica and Acer spp. forest. Macedonia, Astraeus macedonicus on soil. Malaysia, Fusicladium eucalyptigenum on Eucalyptus sp. twigs, Neoacrodontiella eucalypti (incl. Neoacrodontiella gen. nov.) on Eucalyptus urophylla leaves. Mozambique, Meliola gorongosensis on dead Philenoptera violacea leaflets. Nepal, Coniochaeta dendrobiicola from Dendriobium lognicornu roots. New Zealand, Neodevriesia sexualis and Thozetella neonivea on Archontophoenix cunninghamiana leaves. Norway, Calophoma sandfjordenica from a piece of board on a rocky shoreline, Clavaria parvispora on soil, Didymella finnmarkica from a piece of Pinus sylvestris driftwood. Poland, Sugiyamaella trypani from soil. Portugal, Colletotrichum feijoicola from Acca sellowiana. Russia, Crepidotus tobolensis on Populus tremula debris, Entoloma ekaterinae, Entoloma erhardii and Suillus gastroflavus on soil, Nakazawaea ambrosiae from the galleries of Ips typographus under the bark of Picea abies. Slovenia, Pluteus ludwigii on twigs of broadleaved trees. South Africa, Anungitiomyces stellenboschiensis (incl. Anungitiomyces gen. nov.) and Niesslia stellenboschiana on Eucalyptus sp. leaves, Beltraniella pseudoportoricensis on Podocarpus falcatus leaf litter, Corynespora encephalarti on Encephalartos sp. leaves, Cytospora pavettae on Pavetta revoluta leaves, Helminthosporium erythrinicola on Erythrina humeana leaves, Helminthosporium syzygii on a Syzygium sp. bark canker, Libertasomyces aloeticus on Aloe sp. leaves, Penicillium lunae from Musa sp. fruit, Phyllosticta lauridiae on Lauridia tetragona leaves, Pseudotruncatella bolusanthi (incl. Pseudotruncatellaceae fam. nov.) and Dactylella bolusanthi on Bolusanthus speciosus leaves. Spain, Apenidiella foetida on submerged plant debris, Inocybe grammatoides on Quercus ilex subsp. ilex forest humus, Ossicaulis salomii on soil, Phialemonium guarroi from soil. Thailand, Pantospora chromolaenae on Chromolaena odorata leaves. Ukraine, Cadophora helianthi from Helianthus annuus stems. USA, Boletus pseudopinophilus on soil under slash pine, Botryotrichum foricae, Penicillium americanum and Penicillium minnesotense from air. Vietnam, Lycoperdon vietnamense on soil. Morphological and culture characteristics are supported by DNA barcodes.

8.
Persoonia ; 43: 223-425, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32214501

RESUMO

Novel species of fungi described in this study include those from various countries as follows: Antarctica, Apenidiella antarctica from permafrost, Cladosporium fildesense from an unidentified marine sponge. Argentina, Geastrum wrightii on humus in mixed forest. Australia, Golovinomyces glandulariae on Glandularia aristigera, Neoanungitea eucalyptorum on leaves of Eucalyptus grandis, Teratosphaeria corymbiicola on leaves of Corymbia ficifolia, Xylaria eucalypti on leaves of Eucalyptus radiata. Brazil, Bovista psammophila on soil, Fusarium awaxy on rotten stalks of Zea mays, Geastrum lanuginosum on leaf litter covered soil, Hermetothecium mikaniae-micranthae (incl. Hermetothecium gen. nov.) on Mikania micrantha, Penicillium reconvexovelosoi in soil, Stagonosporopsis vannaccii from pod of Glycine max. British Virgin Isles, Lactifluus guanensis on soil. Canada, Sorocybe oblongispora on resin of Picea rubens. Chile, Colletotrichum roseum on leaves of Lapageria rosea. China, Setophoma caverna from carbonatite in Karst cave. Colombia, Lareunionomyces eucalypticola on leaves of Eucalyptus grandis. Costa Rica, Psathyrella pivae on wood. Cyprus, Clavulina iris on calcareous substrate. France, Chromosera ambigua and Clavulina iris var. occidentalis on soil. French West Indies, Helminthosphaeria hispidissima on dead wood. Guatemala, Talaromyces guatemalensis in soil. Malaysia, Neotracylla pini (incl. Tracyllales ord. nov. and Neotracylla gen. nov.) and Vermiculariopsiella pini on needles of Pinus tecunumanii. New Zealand, Neoconiothyrium viticola on stems of Vitis vinifera, Parafenestella pittospori on Pittosporum tenuifolium, Pilidium novae-zelandiae on Phoenix sp. Pakistan, Russula quercus-floribundae on forest floor. Portugal, Trichoderma aestuarinum from saline water. Russia, Pluteus liliputianus on fallen branch of deciduous tree, Pluteus spurius on decaying deciduous wood or soil. South Africa, Alloconiothyrium encephalarti, Phyllosticta encephalarticola and Neothyrostroma encephalarti (incl. Neothyrostroma gen. nov.) on leaves of Encephalartos sp., Chalara eucalypticola on leaf spots of Eucalyptus grandis × urophylla, Clypeosphaeria oleae on leaves of Olea capensis, Cylindrocladiella postalofficium on leaf litter of Sideroxylon inerme, Cylindromonium eugeniicola (incl. Cylindromonium gen. nov.) on leaf litter of Eugenia capensis, Cyphellophora goniomatis on leaves of Gonioma kamassi, Nothodactylaria nephrolepidis (incl. Nothodactylaria gen. nov. and Nothodactylariaceae fam. nov.) on leaves of Nephrolepis exaltata, Falcocladium eucalypti and Gyrothrix eucalypti on leaves of Eucalyptus sp., Gyrothrix oleae on leaves of Olea capensis subsp. macrocarpa, Harzia metrosideri on leaf litter of Metrosideros sp., Hippopotamyces phragmitis (incl. Hippopotamyces gen. nov.) on leaves of Phragmites australis, Lectera philenopterae on Philenoptera violacea, Leptosillia mayteni on leaves of Maytenus heterophylla, Lithohypha aloicola and Neoplatysporoides aloes on leaves of Aloe sp., Millesimomyces rhoicissi (incl. Millesimomyces gen. nov.) on leaves of Rhoicissus digitata, Neodevriesia strelitziicola on leaf litter of Strelitzia nicolai, Neokirramyces syzygii (incl. Neokirramyces gen. nov.) on leaf spots of Syzygium sp., Nothoramichloridium perseae (incl. Nothoramichloridium gen. nov. and Anungitiomycetaceae fam. nov.) on leaves of Persea americana, Paramycosphaerella watsoniae on leaf spots of Watsonia sp., Penicillium cuddlyae from dog food, Podocarpomyces knysnanus (incl. Podocarpomyces gen. nov.) on leaves of Podocarpus falcatus, Pseudocercospora heteropyxidicola on leaf spots of Heteropyxis natalensis, Pseudopenidiella podocarpi, Scolecobasidium podocarpi and Ceramothyrium podocarpicola on leaves of Podocarpus latifolius, Scolecobasidium blechni on leaves of Blechnum capense, Stomiopeltis syzygii on leaves of Syzygium chordatum, Strelitziomyces knysnanus (incl. Strelitziomyces gen. nov.) on leaves of Strelitzia alba, Talaromyces clemensii from rotting wood in goldmine, Verrucocladosporium visseri on Carpobrotus edulis. Spain, Boletopsis mediterraneensis on soil, Calycina cortegadensisi on a living twig of Castanea sativa, Emmonsiellopsis tuberculata in fluvial sediments, Mollisia cortegadensis on dead attached twig of Quercus robur, Psathyrella ovispora on soil, Pseudobeltrania lauri on leaf litter of Laurus azorica, Terfezia dunensis in soil, Tuber lucentum in soil, Venturia submersa on submerged plant debris. Thailand, Cordyceps jakajanicola on cicada nymph, Cordyceps kuiburiensis on spider, Distoseptispora caricis on leaves of Carex sp., Ophiocordyceps khonkaenensis on cicada nymph. USA, Cytosporella juncicola and Davidiellomyces juncicola on culms of Juncus effusus, Monochaetia massachusettsianum from air sample, Neohelicomyces melaleucae and Periconia neobrittanica on leaves of Melaleuca styphelioides × lanceolata, Pseudocamarosporium eucalypti on leaves of Eucalyptus sp., Pseudogymnoascus lindneri from sediment in a mine, Pseudogymnoascus turneri from sediment in a railroad tunnel, Pulchroboletus sclerotiorum on soil, Zygosporium pseudomasonii on leaf of Serenoa repens. Vietnam, Boletus candidissimus and Veloporphyrellus vulpinus on soil. Morphological and culture characteristics are supported by DNA barcodes.

9.
Persoonia ; 40: 240-393, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30505003

RESUMO

Novel species of fungi described in this study include those from various countries as follows: Australia, Chaetopsina eucalypti on Eucalyptus leaf litter, Colletotrichum cobbittiense from Cordyline stricta × C. australis hybrid, Cyanodermella banksiae on Banksia ericifolia subsp. macrantha, Discosia macrozamiae on Macrozamia miquelii, Elsinoë banksiigena on Banksia marginata, Elsinoë elaeocarpi on Elaeocarpus sp., Elsinoë leucopogonis on Leucopogon sp., Helminthosporium livistonae on Livistona australis, Idriellomyces eucalypti (incl. Idriellomyces gen. nov.) on Eucalyptus obliqua, Lareunionomyces eucalypti on Eucalyptus sp., Myrotheciomyces corymbiae (incl. Myrotheciomyces gen. nov., Myrotheciomycetaceae fam. nov.), Neolauriomyces eucalypti (incl. Neolauriomyces gen. nov., Neolauriomycetaceae fam. nov.) on Eucalyptus sp., Nullicamyces eucalypti (incl. Nullicamyces gen. nov.) on Eucalyptus leaf litter, Oidiodendron eucalypti on Eucalyptus maidenii, Paracladophialophora cyperacearum (incl. Paracladophialophoraceae fam. nov.) and Periconia cyperacearum on leaves of Cyperaceae, Porodiplodia livistonae (incl. Porodiplodia gen. nov., Porodiplodiaceae fam. nov.) on Livistona australis, Sporidesmium melaleucae (incl. Sporidesmiales ord. nov.) on Melaleuca sp., Teratosphaeria sieberi on Eucalyptus sieberi, Thecaphora australiensis in capsules of a variant of Oxalis exilis. Brazil, Aspergillus serratalhadensis from soil, Diaporthe pseudoinconspicua from Poincianella pyramidalis, Fomitiporella pertenuis on dead wood, Geastrum magnosporum on soil, Marquesius aquaticus (incl. Marquesius gen. nov.) from submerged decaying twig and leaves of unidentified plant, Mastigosporella pigmentata from leaves of Qualea parviflorae, Mucor souzae from soil, Mycocalia aquaphila on decaying wood from tidal detritus, Preussia citrullina as endophyte from leaves of Citrullus lanatus, Queiroziella brasiliensis (incl. Queiroziella gen. nov.) as epiphytic yeast on leaves of Portea leptantha, Quixadomyces cearensis (incl. Quixadomyces gen. nov.) on decaying bark, Xylophallus clavatus on rotten wood. Canada, Didymella cari on Carum carvi and Coriandrum sativum. Chile, Araucasphaeria foliorum (incl. Araucasphaeria gen. nov.) on Araucaria araucana, Aspergillus tumidus from soil, Lomentospora valparaisensis from soil. Colombia, Corynespora pseudocassiicola on Byrsonima sp., Eucalyptostroma eucalyptorum on Eucalyptus pellita, Neometulocladosporiella eucalypti (incl. Neometulocladosporiella gen. nov.) on Eucalyptus grandis × urophylla, Tracylla eucalypti (incl. Tracyllaceae fam. nov., Tracyllalales ord. nov.) on Eucalyptus urophylla. Cyprus, Gyromitra anthracobia (incl. Gyromitra subg. Pseudoverpa) on burned soil. Czech Republic, Lecanicillium restrictum from the surface of the wooden barrel, Lecanicillium testudineum from scales of Trachemys scripta elegans. Ecuador, Entoloma yanacolor and Saproamanita quitensis on soil. France, Lentithecium carbonneanum from submerged decorticated Populus branch. Hungary, Pleuromyces hungaricus (incl. Pleuromyces gen. nov.) from a large Fagus sylvatica log. Iran, Zymoseptoria crescenta on Aegilops triuncialis. Malaysia, Ochroconis musicola on Musa sp. Mexico, Cladosporium michoacanense from soil. New Zealand , Acrodontium metrosideri on Metrosideros excelsa, Polynema podocarpi on Podocarpus totara, Pseudoarthrographis phlogis (incl. Pseudoarthrographis gen. nov.) on Phlox subulata. Nigeria, Coprinopsis afrocinerea on soil. Pakistan, Russula mansehraensis on soil under Pinus roxburghii. Russia, Baorangia alexandri on soil in deciduous forests with Quercus mongolica. South Africa, Didymocyrtis brachylaenae on Brachylaena discolor. Spain, Alfaria dactylis from fruit of Phoenix dactylifera, Dothiora infuscans from a blackened wall, Exophiala nidicola from the nest of an unidentified bird, Matsushimaea monilioides from soil, Terfezia morenoi on soil. United Arab Emirates, Tirmania honrubiae on soil. USA, Arxotrichum wyomingense (incl. Arxotrichum gen. nov.) from soil, Hongkongmyces snookiorum from submerged detritus from a fresh water fen, Leratiomyces tesquorum from soil, Talaromyces tabacinus on leaves of Nicotiana tabacum. Vietnam, Afroboletus vietnamensis on soil in an evergreen tropical forest, Colletotrichum condaoense from Ipomoea pes-caprae. Morphological and culture characteristics along with DNA barcodes are provided.

10.
Persoonia ; 38: 197-239, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29151633

RESUMO

Elaphomyces ('deer truffles') is one of the most important ectomycorrhizal fungal genera in temperate and subarctic forest ecosystems, but also one of the least documented in public databases. The current systematics are mainly based on macromorphology, and is not significantly different from that proposed by Vittadini (1831). Within the 49 species recognised worldwide, 23 were originally described from Europe and 17 of these were described before the 20th century. Moreover, very recent phylogenetic treatments of the genus are mainly based on a few extra-European species and most common European species are still poorly documented. Based on an extensive taxonomic sampling mainly made in the biogeographically rich Cantabrian area (Spain), complemented with collections from France, Greece, Italy, Norway, Portugal and Sweden, all currently recognized species in Europe have been sequenced at the ITS and 28S of the rDNA. Combined phylogenetic analyses yielded molecular support to sections Elaphomyces and Ceratogaster (here emended), while a third, basal lineage encompasses the sections Malacodermei and Ascoscleroderma as well as the tropical genus Pseudotulostoma. Species limits are discussed and some taxa formerly proposed as genuine species based on morphology and biogeography are re-evaluated as varieties or forms. Spore size and ornamentation, features of the peridial surface, structure of the peridium, and the presence of mycelium patches attached to the peridial surface emerge as the most significant systematic characters. Four new species: E. barrioi, E. quercicola, E. roseolus and E. violaceoniger, one new variety: E. papillatus var. sulphureopallidus, and two new forms: E. granulatus forma pallidosporus and E. anthracinus forma talosporus are introduced, as well as four new combinations in the genus: E. muricatus var. reticulatus, E. muricatus var. variegatus, E. papillatus var. striatosporus and E. morettii var. cantabricus. Lectotypes and epitypes are designated for most recognised species. For systematic purposes, new infrageneric taxa are introduced: E. sect. Ascoscleroderma stat. nov., E. subsect. Sclerodermei stat. nov., E. subsect. Maculati subsect. nov., E. subsect. Muricati subsect. nov., and E. subsect. Papillati subsect. nov. Lastly, E.laevigatus, E. sapidus, E. sulphureopallidus and E. trappei are excluded from the genus and referred to Rhizopogon roseolus, Astraeus sapidus comb. nov., Astraeus hygrometricus and Terfezia trappei comb. nov. (syn.: Terfezia cistophila), respectively.

11.
Persoonia ; 39: 175-200, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29503475

RESUMO

Cortinarius is the largest genus of ectomycorrhizal fungi worldwide. Recent molecular studies have shown high levels of morphological homoplasy within the genus. Importantly, DNA phylogenies can reveal characteristics that have been either over- or underemphasized in taxonomic studies. Here we sequenced and phylogenetically analysed a large set of pan-European and North American collections taxonomically studied and placed in Cortinarius sect. Bicolores and sect. Saturnini, according to traditional morpho-anatomical criteria. Our goal was to circumscribe the evolutionary boundaries of the two sections, to stabilize both the limits and nomenclature of relevant species, and to identify described taxa which, according to our current understanding, belong to other lineages. Our analysis resolves two clades: /Bicolores, including 12 species, one of which is new to science, and /Saturnini, including 6 species. Fifteen binomials, traditionally treated in these two sections based on morphology, do not belong to the above two phylogenetic clades. Instead, six of these latter are clearly placed in other clades that represent sect. Bovini, sect. Sciophylli, sect. Duracini and sect. Brunneotincti. The presence or absence of blue pigments and the detection of specific odours emerge as clearly misleading taxonomic features, but more surprisingly, spore size and ecology can be misleading as well. A total of 63 type specimens were sequenced, 4 neotypes and 2 epitypes are proposed here, and 1 new combination is made.

12.
Genetica ; 143(2): 169-94, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25652231

RESUMO

During the last two decades, the unprecedented development of molecular phylogenetic tools has propelled an opportunity to revisit the fungal kingdom under an evolutionary perspective. Mycology has been profoundly changed but a sustained effort to elucidate large sections of the astonishing fungal diversity is still needed. Here we fill this gap in the case of Lyophyllaceae, a species-rich and ecologically diversified family of mushrooms. Assembly and genealogical concordance multigene phylogenetic analysis of a large dataset that includes original, vouchered material from expert field mycologists reveal the phylogenetic topology of the family, from higher (generic) to lower (species) levels. A comparative analysis of the most widely used phylogenetic markers in Fungi indicates that the nuc rDNA region encompassing the internal transcribed spacers 1 and 2, along with the 5.8S rDNA (ITS) and portions of the genes for RNA polymerase II second largest subunit (RPB2) is the most performing combination to resolve the broadest range of taxa within Lyophyllaceae. Eleven distinct evolutionary lineages are identified, that display partial overlap with traditional genera as well as with the phylogenetic framework previously proposed for the family. Eighty phylogenetic species are delineated, which shed light on a large number of morphological concepts, including rare and poorly documented ones. Probing these novel phylogenetic species to the barcoding method of species limit delineation, indicates that the latter method fully resolves Lyophyllaceae species, except in one clade. This case study provides the first comprehensive phylogenetic overview of Lyophyllaceae, a necessary step towards a taxonomical, ecological and nomenclatural revision of this family of mushrooms. It also proposes a set of methodological guidelines that may be of relevance for future taxonomic works in other groups of Fungi.


Assuntos
Agaricales/classificação , Código de Barras de DNA Taxonômico/métodos , Filogenia , DNA Fúngico/genética , DNA Espaçador Ribossômico/genética , Proteínas Fúngicas/genética , Marcadores Genéticos , RNA Polimerase II/genética , RNA Ribossômico 5,8S/genética
13.
Biol Cell ; 95(9): 625-34, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14720465

RESUMO

Guanine nucleotide exchange factors for Rho-GTPases (Rho-GEFs) invariably share a catalytic Dbl-Homology (DH) domain associated with a Pleckstrin Homology (PH) domain, whose function in Rho-GEF activation is not well understood. Trio is the first member of an emerging family of Dbl proteins containing two Rho-GEF domains (GEFD1 and GEFD2). TrioGEFD1 activates the GTPases RhoG and Rac1, while TrioGEFD2 acts on RhoA. In this study, we have investigated the roles of the two PH domains of Trio in Rho-GEF activity. We show that TrioPH1 is required for GEFD1-mediated induction of actin cytoskeleton remodeling and JNK activation. TrioPH1 is involved both in the catalytic activity and in the subcellular localization of its associated DH domain, by acting as a cytoskeletal targeting signal. Moreover, TrioPH1 in association with DH2 activates the JNK pathway, by an unknown mechanism independent of DH2 catalytic activity. TrioPH2 does not behave as a targeting module in intact cells. TrioPH2 inhibits DH2-dependent stress fiber formation, which correlates with the TrioPH2-mediated inhibition of DH2 GEF activity. In addition, expression in the neuron-like PC12 cell line of the intact Trio protein deleted of each PH domain shows that only TrioPH1 is required for Trio-induced neurite outgrowth. Taken together, these data demonstrate that the two PH domains play a different role in the control of Trio Rho-GEF function.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Sítios de Ligação/genética , Células COS , Catálise , Linhagem Celular , Citoesqueleto/metabolismo , Proteínas de Fluorescência Verde , Fatores de Troca do Nucleotídeo Guanina/genética , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia de Fluorescência , Neuritos/fisiologia , Células PC12 , Fosfoproteínas/genética , Mutação Puntual , Proteínas Serina-Treonina Quinases/genética , Ratos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transfecção , Proteínas rho de Ligação ao GTP/metabolismo
14.
Dev Cell ; 1(3): 363-75, 2001 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-11702948

RESUMO

Proper spindle positioning is essential for spatial control of cell division. Here, we show that zyg-8 plays a key role in spindle positioning during asymmetric division of one-cell stage C. elegans embryos by promoting microtubule assembly during anaphase. ZYG-8 harbors a kinase domain and a domain related to Doublecortin, a microtubule-associated protein (MAP) affected in patients with neuronal migration disorders. Sequencing of zyg-8 mutant alleles demonstrates that both domains are essential for function. ZYG-8 binds to microtubules in vitro, colocalizes with microtubules in vivo, and promotes stabilization of microtubules to drug or cold depolymerization in COS-7 cells. Our findings demonstrate that ZYG-8 is a MAP crucial for proper spindle positioning in C. elegans, and indicate that the function of the Doublecortin domain in modulating microtubule dynamics is conserved across metazoan evolution.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Proteínas de Helminto/genética , Microtúbulos/metabolismo , Proteínas do Tecido Nervoso , Proteínas Serina-Treonina Quinases , Fuso Acromático/metabolismo , Sequência de Aminoácidos , Anáfase/fisiologia , Animais , Células COS , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/embriologia , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Polaridade Celular , Quinases Semelhantes a Duplacortina , Feminino , Genes de Helmintos , Genes Reporter/genética , Proteínas de Helminto/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Microscopia de Fluorescência , Microtúbulos/efeitos dos fármacos , Dados de Sequência Molecular , Nocodazol/farmacologia , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Fuso Acromático/efeitos dos fármacos
15.
J Biol Chem ; 275(8): 5911-7, 2000 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-10681583

RESUMO

The Rho GTPases play an important role in transducing signals linking plasma membrane receptors to the organization of the cytoskeleton and also regulate gene transcription. Here, we show that expression of constitutively active Ras or Cdc42, but not RhoA, RhoG, and Rac1, is sufficient to cause anchorage-independent cell cycle progression of mouse embryonic fibroblasts. However, in anchorage free conditions, whereas activation of either Cdc42 or Ras results in cyclin A transcription and cell cycle progression, Cdc42 is not required for Ras-mediated cyclin A induction, and the two proteins act in a synergistic manner in this process. Surprisingly, the ability of Cdc42 to induce p38 MAPK activity in suspended mouse embryonic fibroblast was impaired. Moreover, inhibition of p38 activity allowed Rac1 to induce anchorage-independent cyclin A transcription, indicating that p38 MAPK has an inhibitory function on cell cycle progression of primary fibroblasts. Finally, a Rac mutant, which is unable to induce lamellipodia and focal complex formation, promoted cyclin A transcription in the presence of SB203580, suggesting that the organization of the cytoskeleton is not required for anchorage-independent proliferation. This demonstrates a novel function for Cdc42, distinct from that of Rac1, in the control of cell proliferation.


Assuntos
Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Fibroblastos/metabolismo , GTP Fosfo-Hidrolases , Proteínas Quinases JNK Ativadas por Mitógeno , Proteínas Quinases Ativadas por Mitógeno , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Adesão Celular/fisiologia , Ciclo Celular/fisiologia , Divisão Celular/fisiologia , Células Cultivadas , Ciclina A/metabolismo , Regulação para Baixo , Fibroblastos/enzimologia , Citometria de Fluxo , Genes Reporter , MAP Quinase Quinase 4 , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Fase S , Transdução de Sinais , Fatores de Transcrição/metabolismo , Transcrição Gênica , Transfecção , Proteína cdc42 de Ligação ao GTP/genética , Proteína cdc42 de Ligação ao GTP/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP , Proteína rhoA de Ligação ao GTP/metabolismo
16.
Nat Cell Biol ; 2(12): 888-92, 2000 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11146652

RESUMO

Rho GTPases control actin reorganization and many other cellular functions. Guanine nucleotide-exchange factors (GEFs) activate Rho GTPases by promoting their exchange of GDP for GTP. Trio is a unique Rho GEF, because it has separate GEF domains, GEFD1 and GEFD2, that control the GTPases RhoG/Rac1 and RhoA, respectively. Dbl-homology (DH) domains that are common to GEFs catalyse nucleotide exchange, and pleckstrin-homology (PH) domains localize Rho GEFs near their downstream targets. Here we show that Trio GEFD1 interacts through its PH domain with the actin-filament-crosslinking protein filamin, and localizes with endogenous filamin in HeLa cells. Trio GEFD1 induces actin-based ruffling in filamin-expressing, but not filamin-deficient, cells and in cells transfected with a filamin construct that lacks the Trio-binding domain. In addition, Trio GEFD1 exchange activity is not affected by filamin binding. Our results indicate that filamin, as a molecular target of Trio, may be a scaffold for the spatial organization of Rho-GTPase-mediated signalling pathways.


Assuntos
Actinas/metabolismo , Proteínas Contráteis/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Fatores de Troca do Nucleotídeo Guanina/química , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas dos Microfilamentos/metabolismo , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas Contráteis/genética , Citoesqueleto/metabolismo , Filaminas , Células HeLa , Humanos , Proteínas dos Microfilamentos/genética , Estrutura Terciária de Proteína , Transdução de Sinais , Transfecção , Proteínas rho de Ligação ao GTP
17.
C R Seances Soc Biol Fil ; 192(2): 367-74, 1998.
Artigo em Francês | MEDLINE | ID: mdl-9759378

RESUMO

The small GTPases Cdc42, Rac and RhoA have important regulatory roles in mediating cytoskeletal rearrangements, MAP kinase cascades and induction of G1 cell cycle progression. The activity of the GTPases is regulated by guanine nucleotide exchange factors (GEFs) which accelerate their GDP/GTP exchange rate, and thereby activate them. All the GEFs for the Rho-GTPases family share two conserved domains: the DH domain (for Dbl-homology domain) responsible for the enzymatic activity, and the PH domain, probably responsible for the proper localization of the molecule. Trio is a multifunctional protein that is comprised of two functional Rho-GEFs domains and a serine/threonine kinase domain. We have shown in vitro and in vivo that the first GEF domain (GEFD1) activates Rac1, while the second GEF domain (GEFD2) acts on RhoA. Moreover, the co-expression of both domains induces simultaneously the activation of both GTPases. To our knowledge, this is the first example of a member of the Rho-GEF family, that contains two functional exchange factor domains, with restricted and different specificity. We are currently investigating how these GEF domains are activated, by addressing the role of the PH domains in GTPases activation by Trio. We have shown that: 1) the PH1 of Trio is necessary for Rac activation by the GEFD1; 2) the PH1 of Trio targets the molecule to the cytoskeleton; 3) the GEFD1 domain of Trio binds, in a two-hybrid screen, the actin binding protein filamin. These data suggest that the PH1 targets Trio to the cytoskeleton close to Rac and its effectors, probably via interaction with the actin-binding protein filamin, consistent with a role of Trio in actin cytoskeleton remodeling.


Assuntos
GTP Fosfo-Hidrolases/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Fatores de Troca do Nucleotídeo Guanina , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Células 3T3 , Animais , Células COS , Citoesqueleto/fisiologia , Camundongos , Fosfoproteínas/biossíntese , Fosfoproteínas/química , Proteínas Serina-Treonina Quinases/biossíntese , Proteínas Serina-Treonina Quinases/química , Proteínas Recombinantes/metabolismo , Transfecção , Proteínas rac de Ligação ao GTP , Proteína rhoA de Ligação ao GTP
18.
Oncogene ; 16(2): 147-52, 1998 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-9464532

RESUMO

Trio contains two functional guanine nucleotide exchange factors (GEF) domains for the Rho-like GTPases and a serine/threonine kinase domain. In vitro, GEF domain 1(GEFD1) is specifically active on Rac1, while GEF domain 2 (GEFD2) targets RhoA. To determine whether Trio could activate Rac1 and RhoA in vivo, we measured the effect of Trio on Mitogen Activated Protein Kinase (MAPK) pathways and cytoskeletal rearrangements events mediated by the two GTPases. We show that: (i) the GEFD1 domain of Trio triggers the MAPK pathway leading to Jun kinase (JNK) activation and the production of membrane ruffles; (ii) co-expression of the TrioGEFD1 domain with a dominant-negative form of Rac blocked JNK induction, whereas a dominant-negative form of Cdc42 did not; (iii) a deletion mutant of TrioGEFD1 lacking a region important for exchange activity could not stimulate JNK activity; (iv) in contrast, the TrioGEFD2 domain does not stimulate JNK activity and induces the formation of stress fibers, as does activated RhoA; (v) furthermore, co-expression of both GEF domains induces simultaneously the formation of ruffles and stress fibers. Trio, therefore represents a unique member of the Rho-GEFs family possessing two functional domains of distinct specificities, that allow it to link Rho and Rac signaling pathway in vivo.


Assuntos
Proteínas de Ligação ao GTP/fisiologia , Proteínas Quinases JNK Ativadas por Mitógeno , Quinases de Proteína Quinase Ativadas por Mitógeno , Fosfoproteínas/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas/fisiologia , Células 3T3 , Animais , Fatores de Troca do Nucleotídeo Guanina , MAP Quinase Quinase 4 , Camundongos , Proteínas Quinases/metabolismo , Proteínas rac de Ligação ao GTP , Proteína rhoA de Ligação ao GTP
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...