Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Circ Genom Precis Med ; 14(3): e003232, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33887960

RESUMO

BACKGROUND: The identification and understanding of therapeutic targets for atherosclerotic cardiovascular disease is of fundamental importance given its global health and economic burden. Inhibition of ANGPTL3 (angiopoietin-like 3) has demonstrated a cardioprotective effect, showing promise for atherosclerotic cardiovascular disease treatment, and is currently the focus of ongoing clinical trials. Here, we assessed the genetic basis of variation in ANGPTL3 levels in the San Antonio Family Heart Study. METHODS: We assayed ANGPTL3 protein levels in ≈1000 Mexican Americans from extended pedigrees. By drawing upon existing plasma lipidome profiles and genomic data we conducted analyses to understand the genetic basis to variation in ANGPTL3 protein levels, and accordingly the correlation with the plasma lipidome. RESULTS: In a variance components framework, we identified that variation in ANGPTL3 was significantly heritable (h2=0.33, P=1.31×10-16). To explore the genetic basis of this heritability, we conducted a genome-wide linkage scan and identified significant linkage (logarithm of odds =6.18) to a locus on chromosome 1 at 90 centimorgans, corresponding to the ANGPTL3 gene location. In the genomes of 23 individuals from a single pedigree, we identified a loss-of-function variant, rs398122988 (N121Kfs*2), in ANGPTL3, that was significantly associated with lower ANGPTL3 levels (ß=-1.69 SD units, P=3.367×10-13), and accounted for the linkage signal at this locus. Given the known role of ANGPTL3 as an inhibitor of endothelial and lipoprotein lipase, we explored the association of ANGPTL3 protein levels and rs398122988 with the plasma lipidome and related phenotypes, identifying novel associations with phosphatidylinositols. CONCLUSIONS: Variation in ANGPTL3 protein levels is heritable and under significant genetic control. Both ANGPTL3 levels and loss-of-function variants in ANGPTL3 have significant associations with the plasma lipidome. These findings further our understanding of ANGPTL3 as a therapeutic target for atherosclerotic cardiovascular disease.


Assuntos
Proteína 3 Semelhante a Angiopoietina , Aterosclerose , Mutação com Perda de Função , Americanos Mexicanos , Fosfatidilinositóis , Adulto , Proteína 3 Semelhante a Angiopoietina/sangue , Proteína 3 Semelhante a Angiopoietina/genética , Aterosclerose/sangue , Aterosclerose/genética , Feminino , Humanos , Lipidômica , Masculino , Pessoa de Meia-Idade , Fosfatidilinositóis/sangue , Fosfatidilinositóis/genética
2.
J Lipid Res ; 60(9): 1630-1639, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31227640

RESUMO

The de novo ceramide synthesis pathway is essential to human biology and health, but genetic influences remain unexplored. The core function of this pathway is the generation of biologically active ceramide from its precursor, dihydroceramide. Dihydroceramides have diverse, often protective, biological roles; conversely, increased ceramide levels are biomarkers of complex disease. To explore the genetics of the ceramide synthesis pathway, we searched for deleterious nonsynonymous variants in the genomes of 1,020 Mexican Americans from extended pedigrees. We identified a Hispanic ancestry-specific rare functional variant, L175Q, in delta 4-desaturase, sphingolipid 1 (DEGS1), a key enzyme in the pathway that converts dihydroceramide to ceramide. This amino acid change was significantly associated with large increases in plasma dihydroceramides. Indexes of DEGS1 enzymatic activity were dramatically reduced in heterozygotes. CRISPR/Cas9 genome editing of HepG2 cells confirmed that the L175Q variant results in a partial loss of function for the DEGS1 enzyme. Understanding the biological role of DEGS1 variants, such as L175Q, in ceramide synthesis may improve the understanding of metabolic-related disorders and spur ongoing research of drug targets along this pathway.


Assuntos
Ceramidas/biossíntese , Ácidos Graxos Dessaturases/genética , Western Blotting , Sistemas CRISPR-Cas/genética , Ceramidas/metabolismo , Feminino , Genótipo , Células Hep G2 , Humanos , Masculino , Americanos Mexicanos
3.
PLoS One ; 9(4): e93297, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24695114

RESUMO

BACKGROUND: Acute kidney injury (AKI) is a syndrome characterized by the rapid loss of the kidney excretory function and is strongly associated with increased early and long-term patient morbidity and mortality. Early diagnosis of AKI is challenging; therefore we profiled plasma microRNA in an effort to identify potential diagnostic circulating markers of renal failure. The goal of the present study was to investigate the dynamic relationship of circulating and renal microRNA profiles within the first 24 hours after bilateral ischemia-reperfusion kidney injury in mice. METHODOLOGY/PRINCIPAL FINDINGS: Bilateral renal ischemia was induced in C57Bl/6 mice (n = 10 per group) by clamping the renal pedicle for 27 min. Ischemia-reperfusion caused highly reproducible, progressive, concordant elevation of miR-714, miR-1188, miR-1897-3p, miR-877*, and miR-1224 in plasma and kidneys at 3, 6 and 24 hours after acute kidney injury compared to the sham-operated mice (n = 5). These dynamics correlated with histologic findings of kidney injury and with a conventional plasma marker of renal dysfunction (creatinine). Pathway analysis revealed close association between miR-1897-3p and Nucks1 gene expression, which putative downstream targets include genes linked to renal injury, inflammation and apoptosis. CONCLUSIONS/SIGNIFICANCE: Systematic profiling of renal and plasma microRNAs in the early stages of experimental AKI provides the first step in advancing circulating microRNAs to the level of promising novel biomarkers.


Assuntos
Injúria Renal Aguda/metabolismo , Isquemia/metabolismo , Rim/metabolismo , MicroRNAs/metabolismo , Plasma/metabolismo , Traumatismo por Reperfusão/metabolismo , Animais , Biomarcadores/metabolismo , Creatinina/metabolismo , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Reperfusão/métodos
4.
Lipids ; 45(8): 757-64, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20640528

RESUMO

ATP-binding cassette transporter A-1 (ABCA1) mediates the transfer of cellular cholesterol to lipid-poor apolipoproteins. Liver X receptors (LXRs) are regulators of cholesterol homeostasis that increase transcription of ABCA1. Synthetic LXR agonists developed to date have been shown to induce ABCA1 mRNA expression and increase reverse cholesterol transport. Unfortunately, there have been few options for quantitatively measuring ABCA1 protein levels, including a previously described competitive ELISA standardized to an ABCA1 peptide with a sensitivity of 80 ng/ml. To address this unmet need, we developed a novel sandwich ELISA standardized to full-length human recombinant ABCA1 protein with sensitivity of approximately 0.5 ng/ml. To determine if the sandwich ELISA had adequate sensitivity to detect LXR-induced increases in ABCA1, we utilized it to measure ABCA1 levels in untreated and LXR agonist-treated human (THP-1) macrophage cells and human peripheral blood mononuclear cells (PBMC). Data obtained from the ELISA demonstrated an approximately eightfold increase in ABCA1 levels in both macrophages as well as PBMC in response to LXR agonist treatment, and results were highly correlated with those obtained by immunoprecipitation and western blotting. Together, these results suggest that the sandwich ELISA may be a sensitive and effective method for quantitating ABCA1 protein levels.


Assuntos
Transportadores de Cassetes de Ligação de ATP/análise , Ensaio de Imunoadsorção Enzimática/métodos , Transportador 1 de Cassete de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/metabolismo , Western Blotting , Linhagem Celular , Células Cultivadas , Humanos , Imunoprecipitação , Leucócitos Mononucleares/metabolismo , Macrófagos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...