Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuropathol Appl Neurobiol ; 50(3): e12982, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38742276

RESUMO

AIMS: Perineuronal nets (PNNs) are an extracellular matrix structure that encases excitable neurons. PNNs play a role in neuroprotection against oxidative stress. Oxidative stress within motor neurons can trigger neuronal death, which has been implicated in amyotrophic lateral sclerosis (ALS). We investigated the spatio-temporal timeline of PNN breakdown and the contributing cellular factors in the SOD1G93A strain, a fast-onset ALS mouse model. METHODS: This was conducted at the presymptomatic (P30), onset (P70), mid-stage (P130), and end-stage disease (P150) using immunofluorescent microscopy, as this characterisation has not been conducted in the SOD1G93A strain. RESULTS: We observed a significant breakdown of PNNs around α-motor neurons in the ventral horn of onset and mid-stage disease SOD1G93A mice compared with wild-type controls. This was observed with increased numbers of microglia expressing matrix metallopeptidase-9 (MMP-9), an endopeptidase that degrades PNNs. Microglia also engulfed PNN components in the SOD1G93A mouse. Further increases in microglia and astrocyte number, MMP-9 expression, and engulfment of PNN components by glia were observed in mid-stage SOD1G93A mice. This was observed with increased expression of fractalkine, a signal for microglia engulfment, within α-motor neurons of SOD1G93A mice. Following PNN breakdown, α-motor neurons of onset and mid-stage SOD1G93A mice showed increased expression of 3-nitrotyrosine, a marker for protein oxidation, which could render them vulnerable to death. CONCLUSIONS: Our observations suggest that increased numbers of MMP-9 expressing glia and their subsequent engulfment of PNNs around α-motor neurons render these neurons sensitive to oxidative damage and eventual death in the SOD1G93A ALS model mouse.


Assuntos
Esclerose Lateral Amiotrófica , Astrócitos , Modelos Animais de Doenças , Metaloproteinase 9 da Matriz , Camundongos Transgênicos , Microglia , Animais , Esclerose Lateral Amiotrófica/patologia , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/genética , Microglia/metabolismo , Microglia/patologia , Camundongos , Metaloproteinase 9 da Matriz/metabolismo , Astrócitos/metabolismo , Astrócitos/patologia , Neurônios Motores/patologia , Neurônios Motores/metabolismo , Fagocitose/fisiologia , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia
2.
Nat Commun ; 13(1): 6543, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36323689

RESUMO

Although epidemiological studies indicate that sleep-disordered breathing (SDB) such as obstructive sleep apnea is a strong risk factor for the development of Alzheimer's disease (AD), the mechanisms of the risk remain unclear. Here we developed a method of modeling SDB in mice that replicates key features of the human condition: altered breathing during sleep, sleep disruption, moderate hypoxemia, and cognitive impairment. When we induced SDB in a familial AD model, the mice displayed exacerbation of cognitive impairment and the pathological features of AD, including increased levels of amyloid-beta and inflammatory markers, as well as selective degeneration of cholinergic basal forebrain neurons. These pathological features were not induced by chronic hypoxia or sleep disruption alone. Our results also revealed that the cholinergic neurodegeneration was mediated by the accumulation of nuclear hypoxia inducible factor 1 alpha. Furthermore, restoring blood oxygen levels during sleep to prevent hypoxia prevented the pathological changes induced by the SDB. These findings suggest a signaling mechanism whereby SDB induces cholinergic basal forebrain degeneration.


Assuntos
Doença de Alzheimer , Prosencéfalo Basal , Síndromes da Apneia do Sono , Animais , Camundongos , Humanos , Doença de Alzheimer/patologia , Prosencéfalo Basal/patologia , Modelos Animais de Doenças , Síndromes da Apneia do Sono/complicações , Hipóxia/patologia , Colinérgicos
3.
Int J Mol Sci ; 23(14)2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35887307

RESUMO

Normal development and function of the central nervous system involves a balance between excitatory and inhibitory neurotransmission. Activity of both excitatory and inhibitory neurons is modulated by inhibitory signalling of the GABAergic and glycinergic systems. Mechanisms that regulate formation, maturation, refinement, and maintenance of inhibitory synapses are established in early life. Deviations from ideal excitatory and inhibitory balance, such as down-regulated inhibition, are linked with many neurological diseases, including epilepsy, schizophrenia, anxiety, and autism spectrum disorders. In the mammalian forebrain, GABA is the primary inhibitory neurotransmitter, binding to GABA receptors, opening chloride channels and hyperpolarizing the cell. We review the involvement of down-regulated inhibitory signalling in neurological disorders, possible mechanisms for disease progression, and targets for therapeutic intervention. We conclude that transgenic models of disrupted inhibitory signalling-in GAD67+/- and VGAT-/- mice-are useful for investigating the effects of down-regulated inhibitory signalling in a range of neurological diseases.


Assuntos
Sinapses , Transmissão Sináptica , Animais , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Mamíferos/metabolismo , Camundongos , Neurogênese , Neurônios/metabolismo , Sinapses/metabolismo , Transmissão Sináptica/genética , Ácido gama-Aminobutírico/metabolismo
4.
EMBO Mol Med ; 14(7): e15608, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35698786

RESUMO

The highly conserved Elongator complex is a translational regulator that plays a critical role in neurodevelopment, neurological diseases, and brain tumors. Numerous clinically relevant variants have been reported in the catalytic Elp123 subcomplex, while no missense mutations in the accessory subcomplex Elp456 have been described. Here, we identify ELP4 and ELP6 variants in patients with developmental delay, epilepsy, intellectual disability, and motor dysfunction. We determine the structures of human and murine Elp456 subcomplexes and locate the mutated residues. We show that patient-derived mutations in Elp456 affect the tRNA modification activity of Elongator in vitro as well as in human and murine cells. Modeling the pathogenic variants in mice recapitulates the clinical features of the patients and reveals neuropathology that differs from the one caused by previously characterized Elp123 mutations. Our study demonstrates a direct correlation between Elp4 and Elp6 mutations, reduced Elongator activity, and neurological defects. Foremost, our data indicate previously unrecognized differences of the Elp123 and Elp456 subcomplexes for individual tRNA species, in different cell types and in different key steps during the neurodevelopment of higher organisms.


Assuntos
RNA de Transferência , Proteínas de Saccharomyces cerevisiae , Animais , Camundongos , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , RNA de Transferência/química , RNA de Transferência/genética , RNA de Transferência/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Prog Neurobiol ; 214: 102282, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35533811

RESUMO

Once widely considered an immune-privileged organ, the brain is now known to be intimately intertwined with immune-system activation. In particular, the complement system, an enzymatic cascade conferring innate immunity, has crucial functions for several neurodevelopmental and neuromigratory mechanisms. Recent advances have demonstrated the neurological importance of complement activation in the adult brain, whereby phagocytosis of weakened synapses biologically encodes "forgetting" of information through complement activation. Neurophysiologically, complement factors can also influence the brain's computational processes, increasing neuronal calcium influx and neurotransmitter release and altering synaptic strength. The complement system's effects on synaptic connectivity can also be observed in many pathological conditions including epilepsy, schizophrenia, and viral-induced cognitive deficits, where perturbations of complement-stimulated synaptic remodelling lead to severe dysfunction. In this review we provide an overview of current knowledge for complement in neurodevelopment, and examine recent evidence highlighting a critical physiological role of complement in the plasticity of the adult brain. This is especially relevant due to the explosion of complement-targeted therapeutics in clinical trials to treat neurological disorders.


Assuntos
Proteínas do Sistema Complemento , Epilepsia , Encéfalo , Humanos , Plasticidade Neuronal/fisiologia , Neurônios , Sinapses/patologia
6.
Brain Sci ; 11(5)2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33925493

RESUMO

Amyotrophic lateral sclerosis (ALS) is a progressive neuromotor disease characterized by the loss of upper and lower motor neurons (MNs), resulting in muscle paralysis and death. Early cortical hyper-excitability is a common pathological process observed clinically and in animal disease models. Although the mechanisms that underlie cortical hyper-excitability are not completely understood, the molecular and cellular mechanisms that cause enhanced neuronal intrinsic excitability and changes in excitatory and inhibitory synaptic activity are starting to emerge. Here, we review the evidence for an anterograde glutamatergic excitotoxic process, leading to cortical hyper-excitability via intrinsic cellular and synaptic mechanisms and for the role of interneurons in establishing disinhibition in clinical and experimental settings. Understanding the mechanisms that lead to these complex pathological processes will likely produce key insights towards developing novel therapeutic strategies to rescue upper MNs, thus alleviating the impact of this fatal disease.

7.
Anat Rec (Hoboken) ; 304(7): 1562-1581, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33099869

RESUMO

The total motor neuron (MN) somato-dendritic surface area is correlated with motor unit type. MNs with smaller surface areas innervate slow (S) and fast fatigue-resistant (FR) motor units, while MNs with larger surface areas innervate fast fatigue-intermediate (FInt) and fast fatigable (FF) motor units. Differences in MN surface area (equivalent to membrane capacitance) underpin the intrinsic excitability of MNs and are consistent with the orderly recruitment of motor units (S > FR > FInt > FF) via the Size Principle. In amyotrophic lateral sclerosis (ALS), large MNs controlling FInt and FF motor units exhibit earlier denervation and death, compared to smaller and more resilient MNs of type S and FR motor units that are spared until late in ALS. Abnormal dendritic morphologies in MNs precede neuronal death in human ALS and in rodent models. We employed Golgi-Cox methods to investigate somal size-dependent changes in the dendritic morphology of hypoglossal MNs in wildtype and SOD1G93A mice (a model of ALS), at postnatal (P) day ~30 (pre-symptomatic), ~P60 (onset), and ~P120 (mid-disease) stages. In wildtype hypoglossal MNs, increased MN somal size correlated with increased dendritic length and spines in a linear fashion. By contrast, in SOD1G93A mice, significant deviations from this linear correlation were restricted to the larger vulnerable MNs at pre-symptomatic (maladaptive) and mid-disease (degenerative) stages. These findings are consistent with excitability changes observed in ALS patients and in rodent models. Our results suggest that intrinsic or synaptic increases in MN excitability are likely to contribute to ALS pathogenesis, not compensate for it.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Dendritos/patologia , Nervo Hipoglosso/patologia , Neurônios Motores/patologia , Esclerose Lateral Amiotrófica/genética , Animais , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Superóxido Dismutase-1
8.
Neuroscience ; 452: 219-227, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33212222

RESUMO

Recent studies have shown that manipulating basolateral amygdala (BLA) activity can affect alcohol consumption, particularly following chronic and/or long-term intake. Although the mechanisms underlying these effects remain unclear, the BLA is highly sensitive to emotional stimuli including stress and anxiety. Negative emotional states facilitate alcohol craving and relapse in patients with alcohol use disorders. Consequently, the aim of this study was to determine the effect of long-term (10 weeks) alcohol drinking on synaptic activity in BLA principal neurons. We utilized an intermittent drinking paradigm in rats, which facilitated escalating, binge-like alcohol intake over the 10 week drinking period. We then recorded spontaneous excitatory and inhibitory postsynaptic currents of BLA principal neurons from long-term alcohol drinking rats and aged-matched water drinking controls. Excitatory postsynaptic current properties from long-term alcohol drinking rats were unchanged compared to those from age-matched water drinking controls. Conversely, we observed significant reductions of inhibitory postsynaptic current amplitude and frequency in long-term ethanol drinking rats compared to age-matched water drinking controls. These results highlight substantive decreases in basal inhibitory synaptic activity of BLA principal neurons following long-term alcohol consumption. A loss of inhibitory control in the BLA could explain the high incidence of compulsive drinking and stress- or anxiety-induced relapse in patients with alcohol use disorders.


Assuntos
Alcoolismo , Complexo Nuclear Basolateral da Amígdala , Idoso , Consumo de Bebidas Alcoólicas , Animais , Humanos , Potenciais Pós-Sinápticos Inibidores , Neurônios , Ratos
9.
Anat Rec (Hoboken) ; 303(5): 1455-1471, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31509351

RESUMO

The motor neuron (MN) soma surface area is correlated with motor unit type. Larger MNs innervate fast fatigue-intermediate (FInt) or fast-fatiguable (FF) muscle fibers in type FInt and FF motor units, respectively. Smaller MNs innervate slow-twitch fatigue-resistant (S) or fast fatigue-resistant (FR) muscle fibers in type S and FR motor units, respectively. In amyotrophic lateral sclerosis (ALS), FInt and FF motor units are more vulnerable, with denervation and MN death occurring for these units before the more resilient S and FR units. Abnormal MN dendritic arbors have been observed in ALS in humans and rodent models. We used a Golgi-Cox impregnation protocol to examine soma size-dependent changes in the dendritic morphology of lumbar MNs in SOD1G93A mice, a model of ALS, at pre-symptomatic, onset and mid-disease stages. In wildtype control mice, the relationship between MN soma surface area and dendritic length or dendritic spine number was highly linear (i.e., increased MN soma size correlated with increased dendritic length and spines). By contrast, in SOD1G93A mice, this linear relationship was lost and dendritic length reduction and spine loss were observed in larger MNs, from pre-symptomatic stages onward. These changes correlated with the neuromotor symptoms of ALS in rodent models. At presymptomatic ages, changes were restricted to the larger MNs, likely to comprise vulnerable FInt and FF motor units. Our results suggest morphological changes of MN dendrites and dendritic spines are likely to contribute ALS pathogenesis, not compensate for it. Anat Rec, 303:1455-1471, 2020. © 2019 American Association for Anatomy.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Dendritos/patologia , Neurônios Motores/patologia , Superóxido Dismutase-1/genética , Esclerose Lateral Amiotrófica/genética , Animais , Espinhas Dendríticas/patologia , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos
10.
Front Cell Neurosci ; 13: 368, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31456666

RESUMO

Brain derived neurotrophic factor (BDNF) is well recognized for its neuroprotective functions, via activation of its high affinity receptor, tropomysin related kinase B (TrkB). In addition, BDNF/TrkB neuroprotective functions can also be elicited indirectly via activation of adenosine 2A receptors (A2 a Rs), which in turn transactivates TrkB. Evidence suggests that alterations in BDNF/TrkB, including TrkB transactivation by A2 a Rs, can occur in several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Although enhancing BDNF has been a major goal for protection of dying motor neurons (MNs), this has not been successful. Indeed, there is emerging in vitro and in vivo evidence suggesting that an upregulation of BDNF/TrkB can cause detrimental effects on MNs, making them more vulnerable to pathophysiological insults. For example, in ALS, early synaptic hyper-excitability of MNs is thought to enhance BDNF-mediated signaling, thereby causing glutamate excitotoxicity, and ultimately MN death. Moreover, direct inhibition of TrkB and A2 a Rs has been shown to protect MNs from these pathophysiological insults, suggesting that modulation of BDNF/TrkB and/or A2 a Rs receptors may be important in early disease pathogenesis in ALS. This review highlights the relevance of pathophysiological actions of BDNF/TrkB under certain circumstances, so that manipulation of BDNF/TrkB and A2 a Rs may give rise to alternate neuroprotective therapeutic strategies in the treatment of neural diseases such as ALS.

11.
Front Cell Neurosci ; 13: 100, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30967762

RESUMO

We investigated effects of the neuroactive steroid anesthetic alfaxalone on intrinsic excitability, and on inhibitory and excitatory synaptic transmission to hypoglossal motor neurons (HMNs). Whole cell recordings were made from HMNs in brainstem slices from 7 to 14-day-old Wistar rats. Spontaneous, miniature, and evoked inhibitory post-synaptic currents (IPSCs), and spontaneous and evoked excitatory PSCs (EPSCs) were recorded at -60 mV. Alfaxalone did not alter spontaneous glycinergic IPSC peak amplitude, rise-time or half-width up to 10 µM, but reduced IPSC frequency from 3 µM. Evoked IPSC amplitude was reduced from 30 nM. Evoked IPSC rise-time was prolonged and evoked IPSC decay time was increased only by 10 µM alfaxalone. Alfaxalone also decreased evoked IPSC paired pulse ratio (PPR). Spontaneous glutamatergic EPSC amplitude and frequency were not altered by alfaxalone, and evoked EPSC amplitude and PPR was also unchanged. Alfaxalone did not alter HMN repetitive firing or action potential amplitude. Baseline holding current at -60 mV with a CsCl-based pipette solution was increased in an inward direction; this effect was not seen when tetrodotoxin (TTX) was present. These results suggest that alfaxalone modulates glycine receptors (GlyRs), causing a delayed and prolonged channel opening, as well as causing presynaptic reduction of glycine release, and activates a membrane current, which remains to be identified. Alfaxalone selectively reduces glycinergic inhibitory transmission to rat HMNs via a combination of pre- and post-synaptic mechanisms. The net effect of these responses to alfaxalone is to increase HMN excitability and may therefore underlie neuro-motor excitation during neurosteroid anesthesia.

12.
J Neurophysiol ; 121(4): 1535-1542, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30785813

RESUMO

The effect of capsaicin on glycinergic synaptic transmission to juvenile rat hypoglossal motor neurons in acute brainstem slices was evaluated in the presence of TTX. Capsaicin caused a robust decrease in miniature IPSC frequency, amplitude, and half-width, showing that this effect is independent of action potential generation. In the presence of capsazepine, a classic TRPV1 antagonist, capsaicin was still able to reduce spontaneous inhibitory postsynaptic current (IPSC) amplitude and frequency. We further investigated whether the effect of capsaicin on glycinergic transmission to hypoglossal motor neurons is pre- or postsynaptic in nature by recording pairs of evoked IPSCs. Interestingly, capsaicin also reduced evoked IPSC amplitude without affecting paired-pulse ratio, indicating a postsynaptic mechanism of action. Significant reduction was also observed in evoked IPSC half-width, rise time, and decay tau. We also show that capsaicin does not have any effect on either transient (It) or sustained (Is) potassium currents. Finally, we also show that the hyperpolarization-activated cationic current (Ih) also remains unchanged after capsaicin application. NEW & NOTEWORTHY Capsaicin reduces the amplitude of quantal and evoked glycinergic inhibitory neurotransmission to brainstem motor neurons without altering activity-dependent transmitter release. This effect of capsaicin is not due to activation of TRPV1 receptors, as it is not blocked by capsazepine, a TRPV1 receptor antagonist. Capsaicin does not alter voltage-dependent potassium current or the hyperpolarization-activated cationic current in brainstem motor neurons.


Assuntos
Capsaicina/farmacologia , Nervo Hipoglosso/fisiologia , Potenciais Pós-Sinápticos Inibidores , Neurônios Motores/efeitos dos fármacos , Animais , Tronco Encefálico/citologia , Tronco Encefálico/metabolismo , Tronco Encefálico/fisiologia , Capsaicina/análogos & derivados , Feminino , Glicina/metabolismo , Nervo Hipoglosso/citologia , Nervo Hipoglosso/metabolismo , Masculino , Neurônios Motores/metabolismo , Neurônios Motores/fisiologia , Canais de Potássio/metabolismo , Ratos , Ratos Wistar , Canais de Cátion TRPV/agonistas , Canais de Cátion TRPV/antagonistas & inibidores
13.
Neurosci Lett ; 694: 231-237, 2019 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-30458215

RESUMO

The airway vagal preganglionic neurons (AVPNs) in the external formation of the nucleus ambiguus (eNA) can be separated into inspiratory-activated AVPNs (IA-AVPNs) and inspiratory-inhibited AVPNs (II-AVPNs). IA-AVPNs are activated by excitatory presynaptic inputs during inspiratory bursts, but the composition and the roles of these excitatory inputs still remain obscure. II-AVPNs are inhibited by inhibitory presynaptic inputs but whether these inhibitory inputs are regulated by excitatory inputs is also unclear. In the current study, AVPNs were retrogradely fluorescent labeled. The IA-AVPNs were discriminated from II-AVPNs by their different synaptic inputs during inspiratory bursts. The excitatory inputs to IA-AVPNs and the presynaptic regulation of II-AVPNs were examined by whole-cell patch clamping. Topical application of 6-Cyano-7-nitroquinoxaline-2,3-dione (CNQX) to the recorded IA-AVPNs almost abolished the tonic EPSCs during inspiratory intervals, inhibited the phasic excitatory currents during inspiratory bursts and attenuated the phasic inspiratory inward currents (PIICs) driven by central inspiratory activity. Blockade of α4ß2 and α7 nicotinic acetylcholine receptors (nAChRs) respectively inhibited PIICs in some IA-AVPNs. Carbenoxolone, a gap junction uncoupler, partly inhibited the PIICs of IA-AVPNs. Focal application of CNQX to the II-AVPNs significantly inhibited the frequency, peak amplitude and area of the phasic inspiratory outward currents (PIOCs). These findings demonstrated that glutamatergic non-NMDA receptors played a predominant role in the excitatory drive to the IA-AVPNs, and that α4ß2, α7 nAChRs and gap junctions were also rhythmically activated by central inspiratory activity. Additionally, glycinergic neurons making inhibitory inputs to the II-AVPNs were pre-synaptically facilitated by excitatory glutamatergic synaptic inputs.


Assuntos
Fibras Autônomas Pré-Ganglionares/fisiologia , Potenciais Pós-Sinápticos Excitadores , Inalação , Neurônios/fisiologia , Nervo Vago/fisiologia , Animais , Animais Recém-Nascidos , Ratos Sprague-Dawley , Receptores Nicotínicos/fisiologia , Sinapses/fisiologia , Receptor Nicotínico de Acetilcolina alfa7/fisiologia
14.
Brain Sci ; 7(12)2017 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-29257086

RESUMO

Quantitative assessments of neuronal subtypes in numerous brain regions show large variations in dendritic arbor size. A critical experimental factor is the method used to visualize neurons. We chose to investigate quantitative differences in basolateral amygdala (BLA) principal neuron morphology using two of the most common visualization methods: Golgi-Cox staining and neurobiotin (NB) filling. We show in 8-week-old Wistar rats that NB-filling reveals significantly larger dendritic arbors and different spine densities, compared to Golgi-Cox-stained BLA neurons. Our results demonstrate important differences and provide methodological insights into quantitative disparities of BLA principal neuron morphology reported in the literature.

15.
Front Cell Neurosci ; 11: 383, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29259542

RESUMO

We investigated whether capsaicin modulated synaptic transmission to hypoglossal motor neurons (HMNs) by acting on transient receptor potential vanilloid type 1 (TRPV1) receptors. Using whole-cell patch clamp recording from neonatal rat HMNs, we found that capsaicin increased spontaneous excitatory post-synaptic current (sEPSC) frequency and amplitude. Interestingly, the only effect of capsaicin on spontaneous inhibitory post-synaptic currents (sIPSCs) was a significant decrease in sIPSC amplitude without altering frequency, indicating a post-synaptic mechanism of action. The frequency of miniature excitatory post-synaptic currents (mEPSCs), recorded in the presence of tetrodotoxin (TTX), was also increased by capsaicin, but capsaicin did not alter mEPSC amplitude, consistent with a pre-synaptic mechanism of action. A negative shift in membrane current (Iholding) was elicited by capsaicin under both recording conditions. The effect of capsaicin on excitatory synaptic transmission remained unchanged in the presence of the TRPV1 antagonists, capsazepine or SB366791, suggesting that capsaicin acts to modulate EPSCs via a mechanism which does not require TRPV1 activation. Capsaicin, however, did not alter evoked excitatory post-synaptic currents (eEPSCs) or the paired-pulse ratio (PPR) of eEPSCs. Repetitive action potential (AP) firing in HMNs was also unaltered by capsaicin, indicating that capsaicin does not change HMN intrinsic excitability. We have demonstrated that capsaicin modulates glutamatergic excitatory, as well as glycinergic inhibitory, synaptic transmission in HMNs by differing pre- and post-synaptic mechanisms. These results expand our understanding regarding the extent to which capsaicin can modulate synaptic transmission to central neurons.

16.
Front Neurosci ; 11: 609, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29163013

RESUMO

Objective: Motor neurons (MNs) die in amyotrophic lateral sclerosis (ALS), a clinically heterogeneous neurodegenerative disease of unknown etiology. In human or rodent studies, MN loss is preceded by increased excitability. As increased neuronal excitability correlates with structural changes in dendritic arbors and spines, we have examined longitudinal changes in dendritic structure in vulnerable neuron populations in a mouse model of familial ALS. Methods: We used a modified Golgi-Cox staining method to determine the progressive changes in dendritic structure of hippocampal CA1 pyramidal neurons, striatal medium spiny neurons, and resistant (trochlear, IV) or susceptible (hypoglossal, XII; lumbar) MNs from brainstem and spinal cord of mice over-expressing the human SOD1G93A (SOD1) mutation, in comparison to wild-type (WT) mice, at four postnatal (P) ages of 8-15, 28-35, 65-75, and 120 days. Results: In SOD1 mice, dendritic changes occur at pre-symptomatic ages in both XII and spinal cord lumbar MNs. Spine loss without dendritic changes was present in striatal neurons from disease onset. Spine density increases were present at all ages studied in SOD1 XII MNs. Spine density increased in neonatal lumbar MNs, before decreasing to control levels by P28-35 and was decreased by P120. SOD1 XII MNs and lumbar MNs, but not trochlear MNs showed vacuolization from the same time-points. Trochlear MN dendrites were unchanged. Interpretation: Dendritic structure and spine alterations correlate with the neuro-motor phenotype in ALS and with cognitive and extra-motor symptoms seen in patients. Prominent early changes in dendritic arbors and spines occur in susceptible cranial and spinal cord MNs, but are absent in MNs resistant to loss in ALS.

17.
Addict Biol ; 22(3): 679-691, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27273539

RESUMO

Alcohol dependence is a debilitating disorder with current therapies displaying limited efficacy and/or compliance. Consequently, there is a critical need for improved pharmacotherapeutic strategies to manage alcohol use disorders (AUDs). Previous studies have shown that the development of alcohol dependence involves repeated cycles of binge-like ethanol intake and abstinence. Therefore, we used a model of binge-ethanol consumption (drinking-in-the-dark) in mice to test the effects of compounds known to modify the activity of neurotransmitters implicated in alcohol addiction. From this, we have identified the FDA-approved antihypertensive drug pindolol, as a potential candidate for the management of AUDs. We show that the efficacy of pindolol to reduce ethanol consumption is enhanced following long-term (12 weeks) binge-ethanol intake, compared with short-term (4 weeks) intake. Furthermore, pindolol had no effect on locomotor activity or consumption of the natural reward sucrose. Because pindolol acts as a dual beta-adrenergic antagonist and 5-HT1A/1B partial agonist, we examined its effect on spontaneous synaptic activity in the basolateral amygdala (BLA), a brain region densely innervated by serotonin and norepinephrine-containing fibres. Pindolol increased spontaneous excitatory post-synaptic current frequency of BLA principal neurons from long-term ethanol-consuming mice but not naïve mice. Additionally, this effect was blocked by the 5-HT1A/1B receptor antagonist methiothepin, suggesting that altered serotonergic activity in the BLA may contribute to the efficacy of pindolol to reduce ethanol intake following long-term exposure. Although further mechanistic investigations are required, this study demonstrates the potential of pindolol as a new treatment option for AUDs that can be fast-tracked into human clinical studies.


Assuntos
Anti-Hipertensivos/farmacologia , Comportamento Animal/efeitos dos fármacos , Consumo Excessivo de Bebidas Alcoólicas/tratamento farmacológico , Etanol/administração & dosagem , Pindolol/farmacologia , Animais , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Tempo
18.
Exp Neurol ; 289: 117-127, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27956032

RESUMO

There is an emerging body of evidence that glycinergic and GABAergic synaptic inputs onto motor neurons (MNs) help regulate the final number of MNs and axonal muscle innervation patterns. Using mutant glutamate decarboxylase 67 (GAD67) and vesicular inhibitory amino acid transporter (VGAT) deficient mice, we describe the effect that deficiencies of presynaptic GABAergic and/or glycinergic release have on the post-synaptic somato-dendritic structure of motor neurons, and the development of excitatory and inhibitory synaptic inputs to MNs. We use whole-cell patch clamp recording of synaptic currents in E18.5 hypoglossal MNs from brainstem slices, combined with dye-filling of these recorded cells with Neurobiotin™, high-resolution confocal imaging and 3-dimensional reconstructions. Hypoglossal MNs from GAD67- and VGAT-deficient mice display decreased inhibitory neurotransmission and increased excitatory synaptic inputs. These changes are associated with increased dendritic arbor length, increased complexity of dendritic branching, and increased density of spiny processes. Our results show that presynaptic release of inhibitory amino acid neurotransmitters are potent regulators of hypoglossal MN morphology and key regulators of synaptic inputs during this critical developmental time point.


Assuntos
Tronco Encefálico/citologia , Glutamato Descarboxilase/deficiência , Neurônios Motores/fisiologia , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/deficiência , Animais , Animais Recém-Nascidos , Biotina/análogos & derivados , Biotina/farmacocinética , Espinhas Dendríticas/genética , Estimulação Elétrica , Eletroporação , Embrião de Mamíferos , Feminino , Glutamato Descarboxilase/genética , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Plasticidade Neuronal/genética , Técnicas de Patch-Clamp , Gravidez , Potenciais Sinápticos/genética , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/genética , Ácido gama-Aminobutírico/farmacologia
19.
J Leukoc Biol ; 101(4): 927-947, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27895165

RESUMO

Mutations in the ataxia-telangiectasia (A-T)-mutated (ATM) gene give rise to the human genetic disorder A-T, characterized by immunodeficiency, cancer predisposition, and neurodegeneration. Whereas a series of animal models recapitulate much of the A-T phenotype, they fail to present with ataxia or neurodegeneration. We describe here the generation of an Atm missense mutant [amino acid change of leucine (L) to proline (P) at position 2262 (L2262P)] rat by intracytoplasmic injection (ICSI) of mutant sperm into oocytes. Atm-mutant rats (AtmL2262P/L2262P ) expressed low levels of ATM protein, suggesting a destabilizing effect of the mutation, and had a significantly reduced lifespan compared with Atm+/+ Whereas these rats did not show cerebellar atrophy, they succumbed to hind-limb paralysis (45%), and the remainder developed tumors. Closer examination revealed the presence of both dsDNA and ssDNA in the cytoplasm of cells in the hippocampus, cerebellum, and spinal cord of AtmL2262P/L2262P rats. Significantly increased levels of IFN-ß and IL-1ß in all 3 tissues were indicative of DNA damage induction of the type 1 IFN response. This was further supported by NF-κB activation, as evidenced by p65 phosphorylation (P65) and translocation to the nucleus in the spinal cord and parahippocampus. Other evidence of neuroinflammation in the brain and spinal cord was the loss of motor neurons and the presence of increased activation of microglia. These data provide support for a proinflammatory phenotype that is manifested in the Atm mutant rat as hind-limb paralysis. This mutant represents a useful model to investigate the importance of neuroinflammation in A-T.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/genética , Citosol/metabolismo , Dano ao DNA/genética , Reparo do DNA/genética , DNA/metabolismo , Inflamação/genética , Mutação de Sentido Incorreto/genética , Degeneração Neural/genética , Sequência de Aminoácidos , Animais , Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/química , Encéfalo/patologia , Morte Celular , Núcleo Celular/metabolismo , Interferon beta/metabolismo , Longevidade , Microglia/metabolismo , Microglia/patologia , NF-kappa B/metabolismo , Fenótipo , Transporte Proteico , Ratos
20.
Hum Mol Genet ; 26(1): 109-123, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28007901

RESUMO

Ataxia-telangiectasia (A-T), an autosomal recessive disease caused by mutations in the ATM gene is characterised by cerebellar atrophy and progressive neurodegeneration which has been poorly recapitulated in Atm mutant mice. Consequently, pathways leading to neurodegeneration in A-T are poorly understood. We describe here the generation of an Atm knockout rat model that does not display cerebellar atrophy but instead paralysis and spinal cord atrophy, reminiscent of that seen in older patients and milder forms of the disorder. Loss of Atm in neurons and glia leads to accumulation of cytosolic DNA, increased cytokine production and constitutive activation of microglia consistent with a neuroinflammatory phenotype. Rats lacking ATM had significant loss of motor neurons and microgliosis in the spinal cord, consistent with onset of paralysis. Since short term treatment with steroids has been shown to improve the neurological signs in A-T patients we determined if that was also the case for Atm-deficient rats. Betamethasone treatment extended the lifespan of Atm knockout rats, prevented microglial activation and significantly decreased neuroinflammatory changes and motor neuron loss. These results point to unrepaired damage to DNA leading to significant levels of cytosolic DNA in Atm-deficient neurons and microglia and as a consequence activation of the cGAS-STING pathway and cytokine production. This in turn would increase the inflammatory microenvironment leading to dysfunction and death of neurons. Thus the rat model represents a suitable one for studying neurodegeneration in A-T and adds support for the use of anti-inflammatory drugs for the treatment of neurodegeneration in A-T patients.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/fisiologia , Ataxia Telangiectasia/complicações , Inflamação/etiologia , Doenças Neurodegenerativas/etiologia , Neurônios/efeitos dos fármacos , Animais , Anti-Inflamatórios/farmacologia , Betametasona/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Células Cultivadas , Modelos Animais de Doenças , Humanos , Inflamação/patologia , Inflamação/prevenção & controle , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/prevenção & controle , Neurônios/metabolismo , Neurônios/patologia , Fenótipo , Ratos , Ratos Mutantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...