Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Endocr Soc ; 8(3): bvae006, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38328479

RESUMO

Hyperparathyroidism jaw-tumor syndrome is an autosomal dominant disorder caused by mutations in the CDC73/HRPT2 tumor suppressor gene, encoding parafibromin, and manifesting benign or malignant parathyroid tumors, ossifying jaw fibromas, uterine tumors, and kidney lesions. Sporadic parathyroid carcinomas also frequently exhibit inactivating CDC73 mutations and loss of parafibromin. To study the role of CDC73 in parathyroid cell proliferation in vivo, we generated mice with a parathyroid-specific deletion of Cdc73. Homozygous knockout mice on a mixed B6/129/CD1 background had decreased serum calcium and PTH and smaller parathyroid glands compared with heterozygous or wild-type littermates, whereas homozygous Cdc73-null mice on other backgrounds exhibited no abnormalities in parathyroid gland function or development. No hypercalcemia or parathyroid hypercellularity was observed in mice of any background examined at any age. Thus, although postnatally acquired complete loss of CDC73 causes parathyroid cell proliferation and hyperparathyroidism, such as seen in human hyperparathyroidism jaw-tumor syndrome, our results suggest that earlier, developmentally imposed complete loss of Cdc73 can cause a primary defect in parathyroid gland structure/function in a strain-dependent manner. This striking disparity in parathyroid phenotype related to genetic background offers a unique opportunity in an in vivo model system to precisely dissect and identify the responsible molecular mechanisms.

2.
Endocrinology ; 164(11)2023 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-37694586

RESUMO

Primary hyperparathyroidism (PHPT) is a common endocrinopathy for which several pathogenic mechanisms, including cyclin D1 overexpression, have been identified. Vitamin D nutritional status may influence parathyroid tumorigenesis, but evidence remains circumstantial. To assess the potential influence of vitamin D insufficiency/deficiency on initiation or progression of parathyroid tumorigenesis, we superimposed vitamin D insufficiency or deficiency on parathyroid tumor-prone parathyroid hormone-cyclin D1 transgenic mice. Mice were placed on diets containing either 2.75 IU/g, 0.25 IU/g, or 0.05 IU/g cholecalciferol, either prior to expected onset of PHPT or after onset of biochemical PHPT. When introduced early, superimposed vitamin D insufficiency/deficiency had no effect on serum calcium or on parathyroid gland growth. However, when introduced after the onset of biochemical PHPT, vitamin D deficiency led to larger parathyroid glands without differences in serum biochemical parameters. Our results suggest that low vitamin D status enhances proliferation of parathyroid cells whose growth is already being tumorigenically driven, in contrast to its apparent lack of direct proliferation-initiating action on normally growing parathyroid cells in this model. These results are consistent with the hypothesis that suboptimal vitamin D status may not increase incidence of de novo parathyroid tumorigenesis but may accelerate growth of a preexisting parathyroid tumor.


Assuntos
Neoplasias das Paratireoides , Deficiência de Vitamina D , Animais , Camundongos , Glândulas Paratireoides , Neoplasias das Paratireoides/complicações , Ciclina D1/genética , Carcinogênese , Transformação Celular Neoplásica , Deficiência de Vitamina D/complicações , Vitamina D/farmacologia , Hormônio Paratireóideo , Vitaminas , Camundongos Transgênicos
3.
J Clin Endocrinol Metab ; 107(5): e2021-e2026, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-34967908

RESUMO

CONTEXT: Multiglandular and familial parathyroid disease constitute important fractions of primary hyperparathyroidism (PHPT). Germline missense variants of GCM2, a regulator of parathyroid development, were observed in familial isolated hyperparathyroidism and sporadic PHPT. However, as these previously reported GCM2 variants occur at relatively high frequencies in the population, understanding their potential clinical utility will require both additional penetrance data and functional evidence relevant to tumorigenicity. OBJECTIVE: Determine the frequency of GCM2 variants of interest among patients with sporadic multigland or familial parathyroid disease and assess their penetrance. DESIGN AND PATIENTS: DNA-encoding PHPT-associated GCM2 germline variants were polymerase chain reaction-amplified and sequenced from 107 patients with either sporadic multigland or suspected/confirmed familial parathyroid tumors. RESULTS: GCM2 variants were observed in 9 of 107 cases (8.4%): Y282D in 4 patients (6.3%) with sporadic multigland disease; Y394S in 2 patients (11.1%) with familial PHPT and 3 (4.8%) with sporadic multigland disease. Compared with the general population, Y282D was enriched 5.9-fold in multigland disease, but its penetrance was very low (0.02%). Y394S was enriched 79-fold in sporadic multigland disease and 93-fold in familial PHPT, but its penetrance was low (1.33% and 1.04%, respectively). CONCLUSIONS: Observed in vitro-activating GCM2 variant alleles are significantly overrepresented in PHPT patients with multiglandular or familial disease compared to the general population, yet penetrance values are very low; that is, most individuals with these variants in the population have a very low risk of developing PHPT. The potential clinical utility of detecting these GCM2 variants requires further investigation, including assessing their possible role as pathogenic/low-penetrance alleles.


Assuntos
Hiperparatireoidismo Primário , Neoplasias das Paratireoides , Mutação em Linhagem Germinativa , Humanos , Hiperparatireoidismo Primário/diagnóstico , Proteínas Nucleares/genética , Neoplasias das Paratireoides/genética , Neoplasias das Paratireoides/patologia , Fatores de Transcrição/genética
4.
Endocr Connect ; 10(3): 302-308, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33617468

RESUMO

OBJECTIVE: Primary hyperparathyroidism is most often caused by a sporadic single-gland parathyroid adenoma (PTA), a tumor type for which cyclin D1 is the only known and experimentally validated oncoprotein. However, the molecular origins of its frequent overexpression have remained mostly elusive. In this study, we explored a potential tumorigenic mechanism that could increase cyclin D1 stability through a defect in molecules responsible for its degradation. METHODS: We examined two tumor suppressor genes known to modulate cyclin D1 ubiquitination, PRKN and FBXO4 (FBX4), for evidence of classic two-hit tumor suppressor inactivation within a cohort of 82 PTA cases. We examined the cohort for intragenic inactivating and splice site mutations by Sanger sequencing and for locus-associated loss of heterozygosity (LOH) by microsatellite analysis. RESULTS: We identified no evidence of bi-allelic tumor suppressor inactivation of PRKN or FBXO4 via inactivating mutation or splice site perturbation, neither in combination with nor independent of LOH. Among the 82 cases, we encountered previously documented benign single nucleotide polymorphisms (SNPs) in 35 tumors at frequencies similar to those reported in the germlines of the general population. Eight cases exhibited intragenic LOH at the PRKN locus, in some cases extending to cover at least an additional 1.7 Mb of chromosome 6q25-26. FBXO4 was not affected by LOH. CONCLUSION: The absence of evidence for specific bi-allelic inactivation in PRKN and FBXO4 in this sizeable cohort suggests that these genes only rarely, if ever, serve as classic driver tumor suppressors responsible for the growth of PTAs.

5.
Endocrinology ; 161(10)2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32877917

RESUMO

The protein product of the cyclin D1 oncogene functions by activating partner cyclin-dependent kinases (cdk)4 or cdk6 to phosphorylate, thereby inactivating, the retinoblastoma protein pRB. Nonclassical, cdk-independent, functions of cyclin D1 have been described but their role in cyclin D1-driven neoplasia, with attendant implications for recently approved cdk4/6 chemotherapeutic inhibitors, requires further examination. We investigated whether cyclin D1's role in parathyroid tumorigenesis in vivo is effected primarily through kinase-dependent or kinase-independent mechanisms. Using a mouse model of cyclin D1-driven parathyroid tumorigenesis (PTH-D1), we generated new transgenic lines harboring a mutant cyclin D1 (KE) that is unable to activate its partner kinases. While this kinase-dead KE mutant effectively drove mammary tumorigenesis in an analogous model, parathyroid-overexpressed cyclin D1 KE mice did not develop the characteristic biochemical hyperparathyroidism or parathyroid hypercellularity of PTH-D1 mice. These results strongly suggest that in parathyroid cells, cyclin D1 drives tumorigenesis predominantly through cdk-dependent mechanisms, in marked contrast with the cdk-independence of cyclin D1-driven mouse mammary cancer. These findings highlight crucial tissue-specific mechanistic differences in cyclin D1-driven tumorigenesis, suggest that parathyroid/endocrine cells may be more tumorigenically vulnerable to acquired genetic perturbations in cdk-mediated proliferative control than other tissues, and carry important considerations for therapeutic intervention.


Assuntos
Ciclina D1/genética , Quinase 4 Dependente de Ciclina/fisiologia , Quinase 6 Dependente de Ciclina/fisiologia , Neoplasias das Paratireoides/genética , Neoplasias das Paratireoides/metabolismo , Adenoma/genética , Adenoma/metabolismo , Adenoma/patologia , Animais , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Ciclina D1/metabolismo , Hiperparatireoidismo/genética , Hiperparatireoidismo/metabolismo , Hiperparatireoidismo/patologia , Camundongos , Camundongos Transgênicos , Mutação , Neoplasias das Paratireoides/patologia , Fosforilação/genética , Transdução de Sinais/genética
6.
JBMR Plus ; 4(6): e10360, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32537547

RESUMO

Benign parathyroid adenoma is the most common cause of primary hyperparathyroidism, whereas malignant parathyroid carcinoma is exceedingly rare. Distinguishing parathyroid carcinoma from benign adenoma is often difficult, and may be considerably delayed even after surgical resection until the rigorous diagnostic criteria of local invasion of surrounding tissues and/or distant metastases are fulfilled. Thus, new insights into their respective molecular bases may potentially aid in earlier diagnostic discrimination between the two, as well as informing new directions for treatment. In two recent studies, gain-of-function mutations in PIK3CA, a recognized driver oncogene in many human malignancies, have been newly identified in parathyroid carcinoma. To assess the potential specificity for malignant, as opposed to benign parathyroid disease, of PIK3CA hotspot mutations, we PCR-amplified and Sanger sequenced codons 111, 542/545, and 1047 and the immediate flanking regions in genomic DNA from 391 typical, sporadic parathyroid adenomas. Four parathyroid adenomas (1%) had subclonal, somatic, heterozygous, activating PIK3CA mutations. The rarity of PIK3CA activating mutations in benign parathyroid adenomas suggests that tumorigenic activation of PIK3CA is strongly associated with malignant parathyroid neoplasia. However, it does not appear that such mutations, at least in isolation, can be relied upon for definitive molecular diagnosis of parathyroid carcinoma. © 2020 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.

7.
J Clin Endocrinol Metab ; 104(6): 1948-1952, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30624640

RESUMO

CONTEXT: Sporadic, solitary parathyroid adenoma is the most common cause of primary hyperparathyroidism (PHPT). Apart from germline variants in certain cyclin-dependent kinase inhibitor genes and occasionally in MEN1, CASR, or CDC73, little is known about possible genetic variants in the population that may confer increased risk for development of typical sporadic adenoma. Transcriptionally activating germline variants, especially within in the C-terminal conserved inhibitory domain (CCID) of glial cells missing 2 (GCM2), encoding a transcription factor required for parathyroid gland development, have recently been reported in association with familial and sporadic PHPT. OBJECTIVE: To evaluate the potential role of specific GCM2 activating variants in sporadic parathyroid adenoma. DESIGN AND PATIENTS: Regions encoding hyperparathyroidism-associated, activating GCM2 variants were PCR amplified and sequenced in genomic DNA from 396, otherwise unselected, cases of sporadic parathyroid adenoma. RESULTS: Activating GCM2 CCID variants (p.V382M and p.Y394S) were identified in six of 396 adenomas (1.52%), and a hyperparathyroidism-associated GCM2 non-CCID activating variant (p.Y282D) was found in 20 adenomas (5.05%). The overall frequency of tested activating GCM2 variants in this study was 6.57%, approximately threefold greater than their frequency in the general population. CONCLUSIONS: The examined, rare CCID variants in GCM2 were enriched in our cohort of patients and appear to confer a moderately increased risk of developing sporadic solitary parathyroid adenoma compared with the general population. However, penetrance of these variants is low, suggesting that the large majority of individuals with such variants will not develop a sporadic parathyroid adenoma.


Assuntos
Predisposição Genética para Doença , Hiperparatireoidismo Primário/genética , Proteínas Nucleares/genética , Neoplasias das Paratireoides/genética , Fatores de Transcrição/genética , Estudos de Coortes , Análise Mutacional de DNA , Feminino , Mutação com Ganho de Função , Mutação em Linhagem Germinativa , Humanos , Hiperparatireoidismo Primário/cirurgia , Masculino , Glândulas Paratireoides/patologia , Glândulas Paratireoides/cirurgia , Neoplasias das Paratireoides/complicações , Neoplasias das Paratireoides/cirurgia , Paratireoidectomia , Polimorfismo de Nucleotídeo Único , Domínios Proteicos/genética
8.
J Endocr Soc ; 1(4): 313-316, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29264489

RESUMO

CONTEXT: The molecular pathogenesis of sporadic parathyroid adenomas is incompletely understood, with alterations in cyclin D1/PRAD1 and MEN1 most firmly established as genetic drivers. The gene encoding the X-linked zinc finger protein (ZFX) has recently been implicated in the pathogenesis of a subset of parathyroid adenomas after recurrent, hotspot-focused somatic mutations were identified. ZFX escapes X inactivation and is transcribed from both alleles in women, and a highly homologous gene encoding the Y-linked zinc finger protein (ZFY) provides dosage compensation in males. OBJECTIVE: We sought to investigate the role of ZFY mutation in sporadic parathyroid adenoma. INTERVENTION: Polymerase chain reaction and Sanger sequencing were used to examine DNA from typically presenting, sporadic (nonfamilial, nonsyndromic) parathyroid adenomas from male patients for mutations within the ZFY gene. RESULTS: No mutations were identified among 117 adenomas. CONCLUSIONS: The absence of ZFY mutations in this series suggests that ZFY rarely, if ever, acts as a driver oncogene in sporadic parathyroid adenomas. The apparent differences in tumorigenic capabilities between the closely related zinc finger proteins ZFX and ZFY suggest that structure-function studies could represent an opportunity to gain insight into neoplastic processes in the parathyroid glands.

9.
JCI Insight ; 2(6): e92061, 2017 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-28352668

RESUMO

Parathyroid carcinoma (PC) is an extremely rare malignancy lacking effective therapeutic intervention. We generated and analyzed whole-exome sequencing data from 17 patients to identify somatic and germline genetic alterations. A panel of selected genes was sequenced in a 7-tumor expansion cohort. We show that 47% (8 of 17) of the tumors harbor somatic mutations in the CDC73 tumor suppressor, with germline inactivating variants in 4 of the 8 patients. The PI3K/AKT/mTOR pathway was altered in 21% of the 24 cases, revealing a major oncogenic pathway in PC. We observed CCND1 amplification in 29% of the 17 patients, and a previously unreported recurrent mutation in putative kinase ADCK1. We identified the first sporadic PCs with somatic mutations in the Wnt canonical pathway, complementing previously described epigenetic mechanisms mediating Wnt activation. This is the largest genomic sequencing study of PC, and represents major progress toward a full molecular characterization of this rare malignancy to inform improved and individualized treatments.


Assuntos
Perfilação da Expressão Gênica , Mutação , Neoplasias das Paratireoides/genética , Estudos de Coortes , Ciclina D1/metabolismo , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteínas Supressoras de Tumor/genética , Via de Sinalização Wnt
11.
J Bone Miner Res ; 30(10): 1797-802, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25828954

RESUMO

Neonatal severe hyperparathyroidism (NSHPT) is a rare disorder characterized by major hypercalcemia, elevated parathyroid hormone levels, and marked enlargement of multiple parathyroid glands, usually associated with germline mutations in the calcium receptor gene CASR. However, little is known about the outgrowth of parathyroid tumors in NSHPT, including whether they represent monoclonal or polyclonal expansions. We sought to examine the clonality of parathyroid tissues resected from a patient with NSHPT and biallelic CASR mutations. DNA from two distinct parathyroid tumors resected from a girl with NSHPT, plus polyclonal/monoclonal control samples, were subjected to analyses of clonality by two independent methods, X-chromosome inactivation analysis at the androgen receptor locus (HUMARA) and BAC array comparative genomic hybridization (CGH). Both parathyroid tumor samples revealed polyclonal patterns by X-inactivation analysis, with polyclonal and monoclonal controls yielding the expected patterns. Similarly, by BAC array CGH, neither parathyroid sample contained monoclonal copy number changes and both appeared identical to the patient-matched polyclonal controls. Our observations provide direct experimental evidence that the markedly enlarged parathyroid tumors in the setting of NSHPT constitute polyclonal, generalized hyperplastic growths rather than monoclonal neoplasms.


Assuntos
Hiperparatireoidismo Primário , Doenças do Recém-Nascido , Mutação , Neoplasias das Paratireoides , Receptores Androgênicos/genética , Receptores de Detecção de Cálcio/genética , Hibridização Genômica Comparativa , Feminino , Humanos , Hiperparatireoidismo Primário/genética , Hiperparatireoidismo Primário/patologia , Lactente , Recém-Nascido , Doenças do Recém-Nascido/genética , Doenças do Recém-Nascido/patologia , Masculino , Neoplasias das Paratireoides/genética , Neoplasias das Paratireoides/patologia
12.
J Histochem Cytochem ; 53(5): 593-602, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15872052

RESUMO

The power for appreciating complex cellular interactions during embryonic development using green fluorescent protein (GFP) as a visual histological marker has not been applied to adult tissues due to loss of GFP signal during paraffin embedding and a high autofluorescent background, particularly in section of bone and bone marrow. Here we demonstrate that the GFP signal is well preserved in frozen sections of adult decalcified bone. Using a tape-transfer system that preserves histological relationships, GFP expression can be related to standard histological stains used in bone biology research. The choice of a dual-filter cube and a strong GFP signal makes it possible to readily distinguish at least four different GFP colors that are distinctly different from the autofluorescent background. An additional advantage of the frozen sections is better preservation of immunological epitopes that allow colocalization of an immunostained section with an endogenous GFP and a strong lacZ signal emanating from a beta-gal marker gene. We present an approach for recording multiple images from the same histological section that allows colocalization of a GFP signal with subsequent stains and procedures that destroy GFP. Examples that illustrate the flexibility for dual imaging of various fluorescent signals are described in this study. The same imaging approach can serve as a vehicle for archiving, retrieving, and sharing histological images among research groups.


Assuntos
Osso e Ossos/metabolismo , Proteínas de Fluorescência Verde/biossíntese , Animais , Desenvolvimento Ósseo , Medula Óssea/metabolismo , Secções Congeladas/métodos , Genes Reporter , Proteínas de Fluorescência Verde/genética , Histocitoquímica , Camundongos , Camundongos Transgênicos , Coloração e Rotulagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...