Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Physiol Biochem ; 129(5): 1058-1070, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33689540

RESUMO

We investigated how oxidative stress (OS) alters Ca2+ handling in ventricular myocytes in early metabolic syndrome (MetS) in sucrose-fed rats. The effects of N-acetyl cysteine (NAC) or dl-Dithiothreitol (DTT) on systolic Ca2+ transients (SCaTs), diastolic Ca2+ sparks (CaS) and Ca2+ waves (CaW), recorded by confocal techniques, and L-type Ca2+ current (ICa), assessed by whole-cell patch clamp, were evaluated in MetS and Control cells. MetS myocytes exhibited decreased SCaTs and CaS frequency but unaffected CaW propagation. In Control cells, NAC/DTT reduced RyR2/SERCA2a activity blunting SCaTs, CaS frequency and CaW propagation, suggesting that basal ROS optimised Ca2+ signalling by maintaining RyR2/SERCA2a function and that these proteins facilitate CaW propagation. Conversely, NAC/DTT in MetS recovered RyR2/SERCA2a function, improving SCaTs and CaS frequency, but unexpectedly decreasing CaW propagation. We hypothesised that OS decreases RyR2/SERCA2a activity at early MetS, and while decreased SERCA2a favours CaW propagation, diminished RyR2 restrains it.


Assuntos
Síndrome Metabólica , Canal de Liberação de Cálcio do Receptor de Rianodina , Ratos , Animais , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/farmacologia , Síndrome Metabólica/metabolismo , Miócitos Cardíacos , Estresse Oxidativo
2.
Cell Calcium ; 56(5): 408-15, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25168907

RESUMO

Obesity and insulin resistance (IR) are strongly connected to the development of subclinical cardiac dysfunction and eventually can lead to heart failure, which is the main cause of morbidity and death in patients having these metabolic diseases. It has been considered that excessive fat tissue may play a critical role in producing systemic IR and enhancing reactive oxygen species (ROS) generation. This oxidative stress (OS) may elicit or exacerbate IR. On the other hand, evidence suggests that some of the cellular mechanisms involved in the pathophysiology of obesity and IR-related cardiomyopathy are excessive myocardial ROS production and abnormal Ca(2+) homeostasis. In addition, emerging evidence suggests that augmented ROS production may contribute to Ca(2+) mishandling by affecting the redox state of key proteins implicated in this process. In this review, we focus on the role of Ca(2+) mishandling in the development of cardiac dysfunction in obesity and IR and address the evidence suggesting that OS might also contribute to cardiac dysfunction by affecting Ca(2+) handling.


Assuntos
Sinalização do Cálcio/genética , Resistência à Insulina/genética , Obesidade/genética , Estresse Oxidativo/genética , Cálcio/metabolismo , Humanos , Insulina/metabolismo , Mitocôndrias Cardíacas/patologia , Obesidade/patologia , Espécies Reativas de Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...