Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
STAR Protoc ; 5(3): 103268, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39215997

RESUMO

Detection of nitrative stress is crucial to understanding redox signaling and pathophysiology. Dysregulated nitrative stress, which generates high levels of peroxynitrite, can damage lipid membranes and cause activation of proinflammatory pathways associated with pulmonary complications. Here, we present a protocol for implementing a peroxynitrite-sensing phospholipid to investigate nitrative stress in murine cells and lung tissue. We detail procedures for sensing ONOO- in stimulated cells, both ex vivo and in vivo, using murine models of acute lung injury (ALI). For complete details on the use and execution of this protocol, please refer to Gutierrez and Aggarwal et al.1.

2.
Toxicol Appl Pharmacol ; 486: 116941, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38677601

RESUMO

Nitrogen mustard (NM; mechlorethamine) is a cytotoxic vesicant known to cause acute lung injury which can progress to chronic disease. Due to the complex nature of NM injury, it has been difficult to analyze early responses of resident lung cells that initiate inflammation and disease progression. To investigate this, we developed a model of acute NM toxicity using murine precision cut lung slices (PCLS), which contain all resident lung cell populations. PCLS were exposed to NM (1-100 µM) for 0.5-3 h and analyzed 1 and 3 d later. NM caused a dose-dependent increase in cytotoxicity and a reduction in metabolic activity, as measured by LDH release and WST-1 activity, respectively. Optimal responses were observed with 50 µM NM after 1 h incubation and these conditions were used in further experiments. Analysis of PCLS bioenergetics using an Agilent Seahorse showed that NM impaired both glycolytic activity and mitochondrial respiration. This was associated with injury to the bronchial epithelium and a reduction in methacholine-induced airway contraction. NM was also found to cause DNA damage in bronchial epithelial cells in PCLS, as measured by expression of γ-H2AX, and to induce oxidative stress, which was evident by a reduction in glutathione levels and upregulation of the antioxidant enzyme catalase. Cleaved caspase-3 was also upregulated in airway smooth muscle cells indicating apoptotic cell death. Characterizing early events in NM toxicity is key in identifying therapeutic targets for the development of efficacious countermeasures.


Assuntos
Pulmão , Mecloretamina , Animais , Mecloretamina/toxicidade , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/metabolismo , Camundongos , Dano ao DNA , Camundongos Endogâmicos C57BL , Relação Dose-Resposta a Droga , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Substâncias para a Guerra Química/toxicidade , Glicólise/efeitos dos fármacos , Masculino , Apoptose/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia
3.
iScience ; 26(12): 108567, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38144454

RESUMO

Lipid membranes and lipid-rich organelles are targets of peroxynitrite (ONOO-), a highly reactive species generated under nitrative stress. We report a membrane-localized phospholipid (DPPC-TC-ONOO-) that allows the detection of ONOO- in diverse lipid environments: biomimetic vesicles, mammalian cell compartments, and within the lung lining. DPPC-TC-ONOO- and POPC self-assemble to membrane vesicles that fluorogenically and selectively respond to ONOO-. DPPC-TC-ONOO-, delivered through lipid nanoparticles, allowed for ONOO- detection in the endoplasmic reticulum upon cytokine-induced nitrative stress in live mammalian cells. It also responded to ONOO- within lung tissue murine models upon acute lung injury. We observed nitrative stress around bronchioles in precision cut lung slices exposed to nitrogen mustard and in pulmonary macrophages following intratracheal bleomycin challenge. Results showed that DPPC-TC-ONOO- functions specifically toward iNOS, a key enzyme modulating nitrative stress, and offers significant advantages over its hydrophilic analog in terms of localization and signal generation.

4.
Toxicol Appl Pharmacol ; 428: 115677, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34390737

RESUMO

Sulfur mustard (SM) is a bifunctional alkylating agent that causes severe injury to the respiratory tract. This is accompanied by an accumulation of macrophages in the lung and the release of the proinflammatory cytokine, tumor necrosis factor (TNF)α. In these studies, we analyzed the effects of blocking TNFα on lung injury, inflammation and oxidative stress induced by inhaled SM. Rats were treated with SM vapor (0.4 mg/kg) or air control by intratracheal inhalation. This was followed 15-30 min later by anti-TNFα antibody (15mg/kg, i.v.) or PBS control. Animals were euthanized 3 days later. Anti-TNFα antibody was found to blunt SM-induced peribronchial edema, perivascular inflammation and alveolar plasma protein and inflammatory cell accumulation in the lung; this was associated with reduced expression of PCNA in histologic sections and decreases in BAL levels of fibrinogen. SM-induced increases in inflammatory proteins including soluble receptor for glycation end products, its ligand, high mobility group box-1, and matrix metalloproteinase-9 were also reduced by anti-TNFα antibody administration, along with increases in numbers of lung macrophages expressing TNFα, cyclooxygenase-2 and inducible nitric oxide synthase. This was correlated with reduced oxidative stress as measured by expression of heme oxygenase-1 and Ym-1. Together, these data suggest that inhibiting TNFα may represent an efficacious approach to mitigating acute lung injury, inflammatory macrophage activation, and oxidative stress induced by inhaled sulfur mustard.


Assuntos
Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Anticorpos Monoclonais/uso terapêutico , Gás de Mostarda/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Lesão Pulmonar Aguda/metabolismo , Animais , Anticorpos Monoclonais/farmacologia , Substâncias para a Guerra Química/toxicidade , Exposição por Inalação/efeitos adversos , Masculino , Gás de Mostarda/administração & dosagem , Estresse Oxidativo/fisiologia , Ratos , Ratos Wistar , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA