Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(9)2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37175811

RESUMO

Angiogenesis is crucial for cancer progression. While several anti-angiogenic drugs are in use for cancer treatment, their clinical benefits are unsatisfactory. Thus, a deeper understanding of the mechanisms sustaining cancer vessel growth is fundamental to identify novel biomarkers and therapeutic targets. Alternative splicing (AS) is an essential modifier of human proteome diversity. Nevertheless, AS contribution to tumor vasculature development is poorly known. The Neuro-Oncological Ventral Antigen 2 (NOVA2) is a critical AS regulator of angiogenesis and vascular development. NOVA2 is upregulated in tumor endothelial cells (ECs) of different cancers, thus representing a potential driver of tumor blood vessel aberrancies. Here, we identified novel AS transcripts generated upon NOVA2 upregulation in ECs, suggesting a pervasive role of NOVA2 in vascular biology. In addition, we report that NOVA2 is also upregulated in ECs of gastric cancer (GC), and its expression correlates with poor overall survival of GC patients. Finally, we found that the AS of the Rap Guanine Nucleotide Exchange Factor 6 (RapGEF6), a newly identified NOVA2 target, is altered in GC patients and associated with NOVA2 expression, tumor angiogenesis, and poor patient outcome. Our findings provide a better understanding of GC biology and suggest that AS might be exploited to identify novel biomarkers and therapeutics for anti-angiogenic GC treatments.


Assuntos
Processamento Alternativo , Células Endoteliais , Neoplasias Gástricas , Regulação para Cima , Células Endoteliais/patologia , Neoplasias Gástricas/fisiopatologia , Neovascularização Patológica/genética , Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Biomarcadores , Prognóstico , Células Cultivadas , Animais , Camundongos
2.
Gels ; 9(3)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36975659

RESUMO

Due to its excellent properties, monolithic silica aerogel is a promising material for innovative glazing systems. Since glazing systems are exposed to deteriorating agents during building service life, it is essential to investigate the long-term performance of aerogel. In the present paper, several 12.7 mm-thick silica aerogel monoliths produced by a rapid supercritical extraction method were tested, including both hydrophilic and hydrophobic samples. After fabrication and characterization of hydrophobicity, porosity, optical and acoustic properties, and color rendering, the samples were artificially aged by combining temperature and solar radiation effects in an experimental device specifically developed at the University of Perugia. The length of the experimental campaign was determined using acceleration factors (AFs). Temperature AF was evaluated according to the Arrhenius law using thermogravimetric analysis to estimate the aerogel activation energy. A natural service life of 12 years was achieved in about 4 months, and the samples' properties were retested. Contact angle tests supported by FT-IR analysis showed loss of hydrophobicity after aging. Visible transmittance values in the 0.67-0.37 range were obtained for hydrophilic and hydrophobic samples, respectively. The aging process involved optical parameter reduction of only 0.02-0.05. There was also a slight loss in acoustic performance (noise reduction coefficient (NRC) = 0.21-0.25 before aging and NRC = 0.18-0.22 after aging). For hydrophobic panes, color shift values in the 10.2-59.1 and 8.4-60.7 ranges were obtained before and after aging, respectively. The presence of aerogel, regardless of hydrophobicity, results in a deterioration in light-green and azure tones. Hydrophobic samples had lower color rendering performance than hydrophilic aerogel, but this did not worsen after the aging process. This paper makes a significant contribution to the progressive deterioration assessment of aerogel monoliths for applications in sustainable buildings.

3.
ACS Omega ; 7(38): 34117-34126, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36188306

RESUMO

This paper deals with the design of a compact sanitization device and the definition of a specific protocol for UV-C disinfection of a surgical face mask. The system was designed considering the material properties, face mask shape, and UV-C light distribution. DIALux software was used to evaluate the irradiance distribution provided by the lamps emitting in the UV-C range. The irradiance needed for UV-C-decontaminated bacteria and virus, and other contaminating pathogens, without compromising their integrity and guaranteeing inactivation of the bacteria, was evaluated. The face mask's material properties were analyzed with respect to UV-C exposure in terms of physicochemical properties, breathability, and bacterial filtration performance. Information on the effect of time-dependent passive decontamination at room temperature storage was provided. Single and multiple cycles of UV-C sanitization did not adversely affect respirator breathability and bacterial filtration efficiency. This multidisciplinal approach may provide important information on how it is possible to correctly sanitize a face mask and, in case of shortage, safely reuse the face mask.

4.
Cancers (Basel) ; 14(2)2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35053510

RESUMO

Extracellular signal-regulated kinase 5 (ERK5) is a unique kinase among MAPKs family members, given its large structure characterized by the presence of a unique C-terminal domain. Despite increasing data demonstrating the relevance of the ERK5 pathway in the growth, survival, and differentiation of normal cells, ERK5 has recently attracted the attention of several research groups given its relevance in inflammatory disorders and cancer. Accumulating evidence reported its role in tumor initiation and progression. In this review, we explore the gene expression profile of ERK5 among cancers correlated with its clinical impact, as well as the prognostic value of ERK5 and pERK5 expression levels in tumors. We also summarize the importance of ERK5 in the maintenance of a cancer stem-like phenotype and explore the major known contributions of ERK5 in the tumor-associated microenvironment. Moreover, although several questions are still open concerning ERK5 molecular regulation, different ERK5 isoforms derived from the alternative splicing process are also described, highlighting the potential clinical relevance of targeting ERK5 pathways.

5.
Nat Commun ; 12(1): 4872, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34381052

RESUMO

The Netrin-1 receptor UNC5B is an axon guidance regulator that is also expressed in endothelial cells (ECs), where it finely controls developmental and tumor angiogenesis. In the absence of Netrin-1, UNC5B induces apoptosis that is blocked upon Netrin-1 binding. Here, we identify an UNC5B splicing isoform (called UNC5B-Δ8) expressed exclusively by ECs and generated through exon skipping by NOVA2, an alternative splicing factor regulating vascular development. We show that UNC5B-Δ8 is a constitutively pro-apoptotic splicing isoform insensitive to Netrin-1 and required for specific blood vessel development in an apoptosis-dependent manner. Like NOVA2, UNC5B-Δ8 is aberrantly expressed in colon cancer vasculature where its expression correlates with tumor angiogenesis and poor patient outcome. Collectively, our data identify a mechanism controlling UNC5B's necessary apoptotic function in ECs and suggest that the NOVA2/UNC5B circuit represents a post-transcriptional pathway regulating angiogenesis.


Assuntos
Apoptose , Vasos Sanguíneos/crescimento & desenvolvimento , Receptores de Netrina/metabolismo , Isoformas de RNA/metabolismo , Processamento Alternativo , Animais , Neoplasias do Colo/irrigação sanguínea , Neoplasias do Colo/metabolismo , Células Endoteliais , Humanos , Morfogênese , Neovascularização Patológica/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Receptores de Netrina/genética , Netrina-1/metabolismo , Antígeno Neuro-Oncológico Ventral , Isoformas de RNA/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Análise de Sobrevida , Peixe-Zebra
6.
Aging Clin Exp Res ; 33(4): 747-758, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31583531

RESUMO

Alzheimer's disease (AD) is the most frequent neurodegenerative disorder in the elderly, occurring in approximately 20% of people older than 80. The molecular causes of AD are still poorly understood. However, recent studies have shown that Alternative Splicing (AS) is involved in the gene expression reprogramming associated with the functional changes observed in AD patients. In particular, mutations in cis-acting regulatory sequences as well as alterations in the activity and sub-cellular localization of trans-acting splicing factors and components of the spliceosome machinery are associated with splicing abnormalities in AD tissues, which may influence the onset and progression of the disease. In this review, we discuss the current molecular understanding of how alterations in the AS process contribute to AD pathogenesis. Finally, recent therapeutic approaches targeting aberrant AS regulation in AD are also reviewed.


Assuntos
Processamento Alternativo , Doença de Alzheimer , Idoso , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Humanos , Mutação , Splicing de RNA/genética , Spliceossomos/genética , Spliceossomos/metabolismo
7.
J Exp Clin Cancer Res ; 39(1): 275, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33287867

RESUMO

Alternative splicing (AS) is a pervasive molecular process generating multiple protein isoforms, from a single gene. It plays fundamental roles during development, differentiation and maintenance of tissue homeostasis, while aberrant AS is considered a hallmark of multiple diseases, including cancer. Cancer-restricted AS isoforms represent either predictive biomarkers for diagnosis/prognosis or targets for anti-cancer therapies. Here, we discuss the contribution of AS regulation in cancer angiogenesis, a complex process supporting disease development and progression. We consider AS programs acting in a specific and non-redundant manner to influence morphological and functional changes involved in cancer angiogenesis. In particular, we describe relevant AS variants or splicing regulators controlling either secreted or membrane-bound angiogenic factors, which may represent attractive targets for therapeutic interventions in human cancer.


Assuntos
Processamento Alternativo , Proteínas de Transporte/metabolismo , Células Endoteliais/metabolismo , Neoplasias/irrigação sanguínea , Animais , Humanos , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo
8.
Cells ; 8(12)2019 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-31771184

RESUMO

Alternative splicing (AS) plays an important role in expanding the complexity of the human genome through the production of specialized proteins regulating organ development and physiological functions, as well as contributing to several pathological conditions. How AS programs impact on the signaling pathways controlling endothelial cell (EC) functions and vascular development is largely unknown. Here we identified, through RNA-seq, changes in mRNA steady-state levels in ECs caused by the neuro-oncological ventral antigen 2 (Nova2), a key AS regulator of the vascular morphogenesis. Bioinformatics analyses identified significant enrichment for genes regulated by peroxisome proliferator-activated receptor-gamma (Ppar-γ) and E2F1 transcription factors. We also showed that Nova2 in ECs controlled the AS profiles of Ppar-γ and E2F dimerization partner 2 (Tfdp2), thus generating different protein isoforms with distinct function (Ppar-γ) or subcellular localization (Tfdp2). Collectively, our results supported a mechanism whereby Nova2 integrated splicing decisions in order to regulate Ppar-γ and E2F1 activities. Our data added a layer to the sequential series of events controlled by Nova2 in ECs to orchestrate vascular biology.


Assuntos
Processamento Alternativo/genética , Células Endoteliais/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas de Ligação a RNA/genética , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Células HeLa , Humanos , Antígeno Neuro-Oncológico Ventral , Reação em Cadeia da Polimerase Via Transcriptase Reversa
9.
Elife ; 82019 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-30829570

RESUMO

The biological players involved in angiogenesis are only partially defined. Here, we report that endothelial cells (ECs) express a novel isoform of the cell-surface adhesion molecule L1CAM, termed L1-ΔTM. The splicing factor NOVA2, which binds directly to L1CAM pre-mRNA, is necessary and sufficient for the skipping of L1CAM transmembrane domain in ECs, leading to the release of soluble L1-ΔTM. The latter exerts high angiogenic function through both autocrine and paracrine activities. Mechanistically, L1-ΔTM-induced angiogenesis requires fibroblast growth factor receptor-1 signaling, implying a crosstalk between the two molecules. NOVA2 and L1-ΔTM are overexpressed in the vasculature of ovarian cancer, where L1-ΔTM levels correlate with tumor vascularization, supporting the involvement of NOVA2-mediated L1-ΔTM production in tumor angiogenesis. Finally, high NOVA2 expression is associated with poor outcome in ovarian cancer patients. Our results point to L1-ΔTM as a novel, EC-derived angiogenic factor which may represent a target for innovative antiangiogenic therapies.


Assuntos
Processamento Alternativo , Proteínas Angiogênicas/metabolismo , Células Endoteliais/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Isoformas de Proteínas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Células Cultivadas , Humanos , Antígeno Neuro-Oncológico Ventral
10.
Mol Cytogenet ; 9: 35, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27123044

RESUMO

BACKGROUND: The centromere is the specialized locus required for correct chromosome segregation during cell division. The DNA of most eukaryotic centromeres is composed of extended arrays of tandem repeats (satellite DNA). In the horse, we previously showed that, although the centromere of chromosome 11 is completely devoid of tandem repeat arrays, all other centromeres are characterized by the presence of satellite DNA. We isolated three horse satellite DNA sequences (37cen, 2P1 and EC137) and described their chromosomal localization in four species of the genus Equus. RESULTS: In the work presented here, using the ChIP-seq methodology, we showed that, in the horse, the 37cen satellite binds CENP-A, the centromere-specific histone-H3 variant. The 37cen sequence bound by CENP-A is GC-rich with 221 bp units organized in a head-to-tail fashion. The physical interaction of CENP-A with 37cen was confirmed through slot blot experiments. Immuno-FISH on stretched chromosomes and chromatin fibres demonstrated that the extension of satellite DNA stretches is variable and is not related to the organization of CENP-A binding domains. Finally, we proved that the centromeric satellite 37cen is transcriptionally active. CONCLUSIONS: Our data offer new insights into the organization of horse centromeres. Although three different satellite DNA families are cytogenetically located at centromeres, only the 37cen family is associated to the centromeric function. Moreover, similarly to other species, CENP-A binding domains are variable in size. The transcriptional competence of the 37cen satellite that we observed adds new evidence to the hypothesis that centromeric transcripts may be required for centromere function.

11.
Nat Commun ; 6: 8479, 2015 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-26446569

RESUMO

Vascular lumen formation is a fundamental step during angiogenesis; yet, the molecular mechanisms underlying this process are poorly understood. Recent studies have shown that neural and vascular systems share common anatomical, functional and molecular similarities. Here we show that the organization of endothelial lumen is controlled at the post-transcriptional level by the alternative splicing (AS) regulator Nova2, which was previously considered to be neural cell-specific. Nova2 is expressed during angiogenesis and its depletion disrupts vascular lumen formation in vivo. Similarly, Nova2 depletion in cultured endothelial cells (ECs) impairs the apical distribution and the downstream signalling of the Par polarity complex, resulting in altered EC polarity, a process required for vascular lumen formation. These defects are linked to AS changes of Nova2 target exons affecting the Par complex and its regulators. Collectively, our results reveal that Nova2 functions as an AS regulator in angiogenesis and is a novel member of the 'angioneurins' family.


Assuntos
Processamento Alternativo/fisiologia , Antígenos de Neoplasias/metabolismo , Células Endoteliais/metabolismo , Endotélio Vascular/fisiologia , Neovascularização Fisiológica/fisiologia , Proteínas de Ligação a RNA/metabolismo , Animais , Antígenos de Neoplasias/genética , Células Cultivadas , Camundongos , Antígeno Neuro-Oncológico Ventral , Proteínas de Ligação a RNA/genética
12.
Biomed Res Int ; 2015: 528954, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26273626

RESUMO

Alterations in expression and/or activity of splicing factors as well as mutations in cis-acting splicing regulatory sequences contribute to cancer phenotypes. Genome-wide studies have revealed more than 15,000 tumor-associated splice variants derived from genes involved in almost every aspect of cancer cell biology, including proliferation, differentiation, cell cycle control, metabolism, apoptosis, motility, invasion, and angiogenesis. In the past decades, several RNA binding proteins (RBPs) have been implicated in tumorigenesis. SAM68 (SRC associated in mitosis of 68 kDa) belongs to the STAR (signal transduction and activation of RNA metabolism) family of RBPs. SAM68 is involved in several steps of mRNA metabolism, from transcription to alternative splicing and then to nuclear export. Moreover, SAM68 participates in signaling pathways associated with cell response to stimuli, cell cycle transitions, and viral infections. Recent evidence has linked this RBP to the onset and progression of different tumors, highlighting misregulation of SAM68-regulated splicing events as a key step in neoplastic transformation and tumor progression. Here we review recent studies on the role of SAM68 in splicing regulation and we discuss its contribution to aberrant pre-mRNA processing in cancer.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Biomarcadores Tumorais/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Neoplasias/fisiopatologia , RNA Neoplásico/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais , Humanos , Polimorfismo de Nucleotídeo Único/genética , Splicing de RNA/genética
13.
Chromosoma ; 124(2): 277-87, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25413176

RESUMO

The centromere directs the segregation of chromosomes during mitosis and meiosis. It is a distinct genetic locus whose identity is established through epigenetic mechanisms that depend on the deposition of centromere-specific centromere protein A (CENP-A) nucleosomes. This important chromatin domain has so far escaped comprehensive molecular analysis due to its typical association with highly repetitive satellite DNA. In previous work, we discovered that the centromere of horse chromosome 11 is completely devoid of satellite DNA; this peculiar feature makes it a unique model to dissect the molecular architecture of mammalian centromeres. Here, we exploited this native satellite-free centromere to determine the precise localization of its functional domains in five individuals: We hybridized DNA purified from chromatin immunoprecipitated with an anti CENP-A antibody to a high resolution array (ChIP-on-chip) of the region containing the primary constriction of horse chromosome 11. Strikingly, each individual exhibited a different arrangement of CENP-A binding domains. We then analysed the organization of each domain using a single nucleotide polymorphism (SNP)-based approach and single molecule analysis on chromatin fibres. Examination of the ten instances of chromosome 11 in the five individuals revealed seven distinct 'positional alleles', each one extending for about 80-160 kb, were found across a region of about 500 kb. Our results demonstrate that CENP-A binding domains are autonomous relative to the underlying DNA sequence and are characterized by positional instability causing the sliding of centromere position. We propose that this dynamic behaviour may be common in mammalian centromeres and may determine the establishment of epigenetic alleles.


Assuntos
Centrômero/genética , Cromossomos de Mamíferos/genética , Cavalos/genética , Alelos , Animais , Autoantígenos/genética , Linhagem Celular , Proteína Centromérica A , Cromatina/genética , Proteínas Cromossômicas não Histona/genética , Clonagem Molecular , DNA Satélite , Epigênese Genética , Feminino , Masculino , Meiose , Procedimentos Analíticos em Microchip , Mitose , Nucleossomos/genética , Polimorfismo de Nucleotídeo Único
15.
Cytogenet Genome Res ; 144(2): 114-23, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25342230

RESUMO

Centromeres are the sites of kinetochore assembly and spindle fiber attachment and consist of protein-DNA complexes in which the DNA component is typically characterized by the presence of extended arrays of tandem repeats called satellite DNA. Here, we describe the isolation and characterization of a 137-bp-long new satellite DNA sequence from the horse genome (EC137), which is also present, even if less abundant, in the domestic donkey, the Grevy's zebra and the Burchelli's zebra. We investigated the chromosomal distribution of the EC137 sequence in these 4 species. Moreover, we analyzed its architectural organization by high-resolution FISH. The position of this sequence with respect to the primary constriction and in relation to the 2 major horse satellite tandem repeats (37 cen and 2PI) on horse chromosomes suggests that the new centromeric equine satellite is an accessory DNA element, presumably contributing to the organization of pericentromeric chromatin. FISH on combed DNA fibers reveals that the EC137 satellite is organized in relatively short stretches (2-8 kb) which are strictly intermingled within 37 cen or 2PI arrays. This arrangement suggests that interchanges between satellite families are a frequent occurrence in the horse genome.


Assuntos
DNA Satélite/genética , Animais , Sequência de Bases , Linhagem Celular , Centrômero/ultraestrutura , Cromossomos/ultraestrutura , DNA/genética , Equidae , Fibroblastos/citologia , Vetores Genéticos , Cavalos , Cinetocoros/ultraestrutura , Metáfase , Dados de Sequência Molecular , Sequências Repetitivas de Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...