Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ChemSusChem ; : e202400396, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38872421

RESUMO

Developing a process that performs the lignocellulosic biomass fractionation under milder conditions simultaneously with the depolymerization and/or the upgrading of all fractions is fundamental for the economic viability of future lignin-first biorefineries. The molten salt hydrates (MSH) with homogeneous or heterogeneous catalysts are a potential alternative to biomass pretreatment that promotes cellulose's dissolution and its conversion to different platform molecules while keeping the lignin reactivity. This review investigates the fractionation of lignocellulosic biomass using MSH to produce chemicals and fuels. First, the MSH properties and applications are discussed. In particular, the use of MSH in cellulose dissolution and hydrolysis for producing high-value chemicals and fuels is presented. Then, the biomass treatment with MSH is discussed. Different strategies for preventing sugar degradation, such as biphasic media, adsorbents, and precipitation, are contrasted. The potential for valorizing isolated lignin from the pretreatment with MSH is debated. Finally, challenges and limitations in utilizing MSH for biomass valorization are discussed, and future developments are presented. Cellulose Avicel®PH-101 ZnCl2 ⋅ 4H2O, ZnBr2 ⋅ 4H2O, LiCl ⋅ 8H2O, LiBr ⋅ 4H2O H2SO4, (0.2 M); H3PW12O40 (0.067 M); H4SiW12O40 (0.05 M) T (145-175 °C); Time (30-120 min) Organic solvent (MIBK) LA (94 %) and HMF (3.4 %) Dissolution time: ZnBr2 ⋅ 4H2O<>2O<>2 ⋅ 4H2O<>2O; The highest conversion of pretreated cellulose and yield of glucose were obtained with ZnBr2 ⋅ 4H2O (88 % and 80 %, respectively).

2.
Molecules ; 27(12)2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35745022

RESUMO

The development of the future French and European bioeconomies will involve developing new green chemical processes in which catalytic transformations are key. The VAALBIO team (valorization of alkanes and biomass) of the UCCS laboratory (Unité de Catalyse et Chimie du Solide) are working on various catalytic processes, either developing new catalysts and/or designing the whole catalytic processes. Our research is focused on both the fundamental and applied aspects of the processes. Through this review paper, we demonstrate the main topics developed by our team focusing mostly on oxygen- and hydrogen-related processes as well as on green hydrogen production and hybrid catalysis. The social impacts of the bioeconomy are also discussed applying the concept of the institutional compass.


Assuntos
Hidrogênio , Lignina , Biomassa , Catálise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA