Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Zookeys ; 1181: 125-154, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37841030

RESUMO

Using an integrative taxonomic approach including genetic and morphological data, we formally describe a new microendemic gecko species belonging to the Paroedurabastardi clade, previously referred to as P.bastardi D. We name this taxon currently known from Anja Reserve and Tsaranoro Valley Forest (south-central Madagascar), as P.manongavatosp. nov. The new species differs from other species of the P.bastardi clade by ≥ 12.4% uncorrected p-distance at the mitochondrial 16S rRNA gene and it forms a monophyletic group in the COI mtDNA phylogenetic tree. It lacks haplotype sharing at the nuclear KIAA1239 and CMOS genes with the other species of the same complex, including the syntopic P.rennerae. Given its limited extent of occurrence and high levels of habitat fragmentation linked to forest clearances and fires, we propose the IUCN Red List Category of Critically Endangered, based on the B1ab(iii) criterion. The conservation value of Anja Reserve and Tsaranoro Valley Forest is remarkable. Preserving the remaining deciduous forest habitat is of paramount importance to protect these narrow-range reptile species.

2.
Mol Phylogenet Evol ; 178: 107635, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36208694

RESUMO

Most of the unique and diverse vertebrate fauna that inhabits Madagascar derives from in situ diversification from colonisers that reached this continental island through overseas dispersal. The endemic Malagasy Scincinae lizards are amongst the most species-rich squamate groups on the island. They colonised all bioclimatic zones and display many ecomorphological adaptations to a fossorial (burrowing) lifestyle. Here we propose a new phylogenetic hypothesis for their diversification based on the largest taxon sampling so far compiled for this group. We estimated divergence times and investigated several aspects of their diversification (diversification rate, body size and fossorial lifestyle evolution, and biogeography). We found that diversification rate was constant throughout most of the evolutionary history of the group, but decreased over the last 6-4 million years and independently from body size and fossorial lifestyle evolution. Fossoriality has evolved from fully quadrupedal ancestors at least five times independently, which demonstrates that even complex morphological syndromes - in this case involving traits such as limb regression, body elongation, modification of cephalic scalation, depigmentation, and eyes and ear-opening regression - can evolve repeatedly and independently given enough time and eco-evolutionary advantages. Initial diversification of the group likely occurred in forests, and the divergence of sand-swimmer genera around 20 Ma appears linked to a period of aridification. Our results show that the large phenotypic variability of Malagasy Scincinae has not influenced diversification rate and that their rich species diversity results from a constant accumulation of lineages through time. By compiling large geographic and trait-related datasets together with the computation of a new time tree for the group, our study contributes important insights on the diversification of Malagasy vertebrates.


Assuntos
Lagartos , Animais , Filogenia , Serpentes , Tamanho Corporal , Madagáscar
3.
Science ; 378(6623): eabf0869, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36454829

RESUMO

Madagascar's biota is hyperdiverse and includes exceptional levels of endemicity. We review the current state of knowledge on Madagascar's past and current terrestrial and freshwater biodiversity by compiling and presenting comprehensive data on species diversity, endemism, and rates of species description and human uses, in addition to presenting an updated and simplified map of vegetation types. We report a substantial increase of records and species new to science in recent years; however, the diversity and evolution of many groups remain practically unknown (e.g., fungi and most invertebrates). Digitization efforts are increasing the resolution of species richness patterns and we highlight the crucial role of field- and collections-based research for advancing biodiversity knowledge and identifying gaps in our understanding, particularly as species richness corresponds closely to collection effort. Phylogenetic diversity patterns mirror that of species richness and endemism in most of the analyzed groups. We highlight humid forests as centers of diversity and endemism because of their role as refugia and centers of recent and rapid radiations. However, the distinct endemism of other areas, such as the grassland-woodland mosaic of the Central Highlands and the spiny forest of the southwest, is also biologically important despite lower species richness. The documented uses of Malagasy biodiversity are manifold, with much potential for the uncovering of new useful traits for food, medicine, and climate mitigation. The data presented here showcase Madagascar as a unique "living laboratory" for our understanding of evolution and the complex interactions between people and nature. The gathering and analysis of biodiversity data must continue and accelerate if we are to fully understand and safeguard this unique subset of Earth's biodiversity.


Assuntos
Biodiversidade , Evolução Biológica , Humanos , Biota , Florestas , Madagáscar , Filogenia
4.
Science ; 378(6623): eadf1466, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36454830

RESUMO

Madagascar's unique biota is heavily affected by human activity and is under intense threat. Here, we review the current state of knowledge on the conservation status of Madagascar's terrestrial and freshwater biodiversity by presenting data and analyses on documented and predicted species-level conservation statuses, the most prevalent and relevant threats, ex situ collections and programs, and the coverage and comprehensiveness of protected areas. The existing terrestrial protected area network in Madagascar covers 10.4% of its land area and includes at least part of the range of the majority of described native species of vertebrates with known distributions (97.1% of freshwater fishes, amphibians, reptiles, birds, and mammals combined) and plants (67.7%). The overall figures are higher for threatened species (97.7% of threatened vertebrates and 79.6% of threatened plants occurring within at least one protected area). International Union for Conservation of Nature (IUCN) Red List assessments and Bayesian neural network analyses for plants identify overexploitation of biological resources and unsustainable agriculture as the most prominent threats to biodiversity. We highlight five opportunities for action at multiple levels to ensure that conservation and ecological restoration objectives, programs, and activities take account of complex underlying and interacting factors and produce tangible benefits for the biodiversity and people of Madagascar.


Assuntos
Biodiversidade , Espécies em Perigo de Extinção , Animais , Humanos , Teorema de Bayes , Biota , Madagáscar , Mamíferos , Plantas
5.
Zookeys ; 951: 133-157, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32774110

RESUMO

The genus Gephyromantis belongs to the species-rich family Mantellidae and is currently divided in six subgenera. Among these is the subgenus Phylacomantis, which currently includes four described species: Gephyromantis pseudoasper, G. corvus, G. azzurrae, and G. atsingy. The latter three species are distributed in western Madagascar, and two of them (G. azzurrae and G. corvus) occur in the Isalo Massif. Based on the analysis of molecular data (a fragment of the 16S rRNA gene), morphological inspection of museum specimens, and photographic comparisons, G. azzurrae is synonymised with G. corvus and the second Phylacomantis lineage of Isalo is described as G. kintana sp. nov. This medium-sized frog species (adult snout-vent length 35-44 mm) is assigned to this subgenus according to genetic and morphological similarities to the other known species of Phylacomantis. Gephyromantis kintana sp. nov. is known only from the Isalo Massif, while new records for G. corvus extend its range to ca. 200 km off its currently known distribution. These two taxa seem to occur in syntopy in at least one locality in Isalo, and the easiest way to distinguish them is the inspection of the ventral colouration, dark in G. corvus and dirty white in G. kintana.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...