Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 15(16)2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37627191

RESUMO

BACKGROUND: Identifying prostate cancer (PCa) patients with a worse prognosis and a higher risk of biochemical recurrence (BCR) is essential to guide treatment choices. Here, we aimed to identify possible imaging biomarker (perfusion/diffusion + radiomic features) profiles extracted from MRIs that were able to discriminate patients according to their risk or the occurrence of BCR 10 years after diagnosis, as well as to evaluate their predictive value with or without clinical data. METHODS: Patients with localized PCa receiving neoadjuvant androgen deprivation therapy and radiotherapy were retrospectively evaluated. Imaging features were extracted from MRIs for each prostate region or for the whole gland. Univariate and multivariate analyses were conducted. RESULTS: 128 patients (mean [range] age, 71 [50-83] years) were included. Prostate region-wise imaging biomarker profiles mainly composed of radiomic features allowed discriminating risk groups and patients experiencing BCR. Heterogeneity-related radiomic features were increased in patients with worse prognosis and with BCR. Overall, imaging biomarkers profiles retained good predictive ability (AUC values superior to 0.725 in most cases), which generally improved when clinical data were included (particularly evident for the prediction of the BCR, with AUC values ranging from 0.841 to 0.877 for combined models and sensitivity values above 0.960) and when models were built per prostate region vs. the whole gland. CONCLUSIONS: Prostate region-aware imaging profiles enable identification of patients with worse prognosis and with a higher risk of BCR, retaining higher predictive values when combined with clinical variables.

2.
J Magn Reson Imaging ; 51(5): 1478-1486, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31654541

RESUMO

BACKGROUND: Glioblastoma (GBM) is the most aggressive primary brain tumor, characterized by a heterogeneous and abnormal vascularity. Subtypes of vascular habitats within the tumor and edema can be distinguished: high angiogenic tumor (HAT), low angiogenic tumor (LAT), infiltrated peripheral edema (IPE), and vasogenic peripheral edema (VPE). PURPOSE: To validate the association between hemodynamic markers from vascular habitats and overall survival (OS) in glioblastoma patients, considering the intercenter variability of acquisition protocols. STUDY TYPE: Multicenter retrospective study. POPULATION: In all, 184 glioblastoma patients from seven European centers participating in the NCT03439332 clinical study. FIELD STRENGTH/SEQUENCE: 1.5T (for 54 patients) or 3.0T (for 130 patients). Pregadolinium and postgadolinium-based contrast agent-enhanced T1 -weighted MRI, T2 - and FLAIR T2 -weighted, and dynamic susceptibility contrast (DSC) T2 * perfusion. ASSESSMENT: We analyzed preoperative MRIs to establish the association between the maximum relative cerebral blood volume (rCBVmax ) at each habitat with OS. Moreover, the stratification capabilities of the markers to divide patients into "vascular" groups were tested. The variability in the markers between individual centers was also assessed. STATISTICAL TESTS: Uniparametric Cox regression; Kaplan-Meier test; Mann-Whitney test. RESULTS: The rCBVmax derived from the HAT, LAT, and IPE habitats were significantly associated with patient OS (P < 0.05; hazard ratio [HR]: 1.05, 1.11, 1.28, respectively). Moreover, these markers can stratify patients into "moderate-" and "high-vascular" groups (P < 0.05). The Mann-Whitney test did not find significant differences among most of the centers in markers (HAT: P = 0.02-0.685; LAT: P = 0.010-0.769; IPE: P = 0.093-0.939; VPE: P = 0.016-1.000). DATA CONCLUSION: The rCBVmax calculated in HAT, LAT, and IPE habitats have been validated as clinically relevant prognostic biomarkers for glioblastoma patients in the pretreatment stage. This study demonstrates the robustness of the hemodynamic tissue signature (HTS) habitats to assess the GBM vascular heterogeneity and their association with patient prognosis independently of intercenter variability. LEVEL OF EVIDENCE: 3 Technical Efficacy Stage: 2 J. Magn. Reson. Imaging 2020;51:1478-1486.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Neoplasias Encefálicas/diagnóstico por imagem , Meios de Contraste , Glioblastoma/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Prognóstico , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...