Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38712201

RESUMO

Models of nuclear genome organization often propose a binary division into active versus inactive compartments, yet they overlook nuclear bodies. Here we integrated analysis of sequencing and image-based data to compare genome organization in four human cell types relative to three different nuclear locales: the nuclear lamina, nuclear speckles, and nucleoli. Whereas gene expression correlates mostly with nuclear speckle proximity, DNA replication timing correlates with proximity to multiple nuclear locales. Speckle attachment regions emerge as DNA replication initiation zones whose replication timing and gene composition vary with their attachment frequency. Most facultative LADs retain a partially repressed state as iLADs, despite their positioning in the nuclear interior. Knock out of two lamina proteins, Lamin A and LBR, causes a shift of H3K9me3-enriched LADs from lamina to nucleolus, and a reciprocal relocation of H3K27me3-enriched partially repressed iLADs from nucleolus to lamina. Thus, these partially repressed iLADs appear to compete with LADs for nuclear lamina attachment with consequences for replication timing. The nuclear organization in adherent cells is polarized with nuclear bodies and genomic regions segregating both radially and relative to the equatorial plane. Together, our results underscore the importance of considering genome organization relative to nuclear locales for a more complete understanding of the spatial and functional organization of the human genome.

2.
bioRxiv ; 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37961445

RESUMO

Genome differential positioning within interphase nuclei remains poorly explored. We extended and validated TSA-seq to map genomic regions near nucleoli and pericentric heterochromatin in four human cell lines. Our study confirmed that smaller chromosomes localize closer to nucleoli but further deconvolved this by revealing a preference for chromosome arms below 36-46 Mbp in length. We identified two lamina associated domain subsets through their differential nuclear lamina versus nucleolar positioning in different cell lines which showed distinctive patterns of DNA replication timing and gene expression across all cell lines. Unexpectedly, active, nuclear speckle-associated genomic regions were found near typically repressive nuclear compartments, which is attributable to the close proximity of nuclear speckles and nucleoli in some cell types, and association of centromeres with nuclear speckles in hESCs. Our study points to a more complex and variable nuclear genome organization than suggested by current models, as revealed by our TSA-seq methodology.

3.
Mol Cell ; 83(15): 2624-2640, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37419111

RESUMO

The four-dimensional nucleome (4DN) consortium studies the architecture of the genome and the nucleus in space and time. We summarize progress by the consortium and highlight the development of technologies for (1) mapping genome folding and identifying roles of nuclear components and bodies, proteins, and RNA, (2) characterizing nuclear organization with time or single-cell resolution, and (3) imaging of nuclear organization. With these tools, the consortium has provided over 2,000 public datasets. Integrative computational models based on these data are starting to reveal connections between genome structure and function. We then present a forward-looking perspective and outline current aims to (1) delineate dynamics of nuclear architecture at different timescales, from minutes to weeks as cells differentiate, in populations and in single cells, (2) characterize cis-determinants and trans-modulators of genome organization, (3) test functional consequences of changes in cis- and trans-regulators, and (4) develop predictive models of genome structure and function.


Assuntos
Núcleo Celular , Genoma , Genoma/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cromatina/metabolismo
4.
ACS Synth Biol ; 12(5): 1424-1436, 2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37058298

RESUMO

Fluorescence microscopy imaging of specific chromosomal sites is essential for genome architecture research. To enable visualization of endogenous loci in mammalian cells, programmable DNA-binding proteins such as TAL effectors and CRISPR/dCas9 are commonly utilized. In addition, site-specific insertion of a TetO repeat array, coupled with TetR-enhanced green fluorescent protein fusion protein expression, can be used for labeling nonrepetitive endogenous loci. Here, we performed a comparison of several live-cell chromosome tagging methods, including their effect on subnuclear positioning, expression of adjacent genes, and DNA replication timing. Our results showed that the CRISPR-based imaging method can delay DNA replication timing and sister chromatid resolution at certain region. However, subnuclear localization of the labeled locus and gene expression from adjacent loci were unaffected by either TetO/TetR or CRISPR-based methods, suggesting that CRISPR-based imaging could be used for applications that do not require DNA replication analysis.


Assuntos
Sistemas CRISPR-Cas , Período de Replicação do DNA , Animais , Sistemas CRISPR-Cas/genética , Cromossomos , Genoma , Proteínas de Ligação a DNA , Chaperonas Moleculares , Mamíferos
5.
Methods Mol Biol ; 2532: 145-186, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35867249

RESUMO

Distinct nuclear structures and bodies are involved in genome intranuclear positioning. Measuring proximity and relative distances of genomic loci to these nuclear compartments, and correlating this chromosome intranuclear positioning with epigenetic marks and functional readouts genome-wide, will be required to appreciate the true extent to which this nuclear compartmentalization contributes to regulation of genome functions. Here we present detailed protocols for TSA-seq, the first sequencing-based method for estimation of cytological proximity of chromosomal loci to spatially discrete nuclear structures, such as nuclear bodies or the nuclear lamina. TSA-seq uses Tyramide Signal Amplification (TSA) of immunostained cells to create a concentration gradient of tyramide-biotin free radicals which decays exponentially as a function of distance from a point-source target. Reaction of these free radicals with DNA deposits tyramide-biotin onto DNA as a function of distance from the point source. The relative enrichment of this tyramide-labeled DNA versus input DNA, revealed by DNA sequencing, can then be used as a "cytological ruler" to infer relative, or even absolute, mean chromosomal distances from immunostained nuclear compartments. TSA-seq mapping is highly reproducible and largely independent of the target protein or antibody choice for labeling a particular nuclear compartment. Our protocols include variations in TSA labeling conditions to provide varying spatial resolution as well as enhanced sensitivity. Our most streamlined protocol produces TSA-seq spatial mapping over a distance range of ~1 micron from major nuclear compartments using ~10-20 million cells.


Assuntos
Núcleo Celular , Cromossomos , Biotina/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cromossomos/genética , Cromossomos/metabolismo , DNA/genética , DNA/metabolismo , Lâmina Nuclear/metabolismo
7.
Artigo em Inglês | MEDLINE | ID: mdl-34400557

RESUMO

This work reviews nuclear compartments, defined broadly to include distinct nuclear structures, bodies, and chromosome domains. It first summarizes original cytological observations before comparing concepts of nuclear compartments emerging from microscopy versus genomic approaches and then introducing new multiplexed imaging approaches that promise in the future to meld both approaches. I discuss how previous models of radial distribution of chromosomes or the binary division of the genome into A and B compartments are now being refined by the recognition of more complex nuclear compartmentalization. The poorly understood question of how these nuclear compartments are established and maintained is then discussed, including through the modern perspective of phase separation, before moving on to address possible functions of nuclear compartments, using the possible role of nuclear speckles in modulating gene expression as an example. Finally, the review concludes with a discussion of future questions for this field.


Assuntos
Núcleo Celular , Genoma , Núcleo Celular/metabolismo , Cromossomos
8.
Genome Biol ; 22(1): 36, 2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-33446254

RESUMO

We report SPIN, an integrative computational method to reveal genome-wide intranuclear chromosome positioning and nuclear compartmentalization relative to multiple nuclear structures, which are pivotal for modulating genome function. As a proof-of-principle, we use SPIN to integrate nuclear compartment mapping (TSA-seq and DamID) and chromatin interaction data (Hi-C) from K562 cells to identify 10 spatial compartmentalization states genome-wide relative to nuclear speckles, lamina, and putative associations with nucleoli. These SPIN states show novel patterns of genome spatial organization and their relation to other 3D genome features and genome function (transcription and replication timing). SPIN provides critical insights into nuclear spatial and functional compartmentalization.


Assuntos
Núcleo Celular/genética , Genoma Humano , Compartimento Celular , Cromatina , Mapeamento Cromossômico , Cromossomos , Replicação do DNA , Histonas , Humanos , Células K562 , Modelos Genéticos
9.
Genome Res ; 31(2): 251-264, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33355299

RESUMO

TSA-seq mapping suggests that gene distance to nuclear speckles is more deterministic and predictive of gene expression levels than gene radial positioning. Gene expression correlates inversely with distance to nuclear speckles, with chromosome regions of unusually high expression located at the apex of chromosome loops protruding from the nuclear periphery into the interior. Genomic distances to the nearest lamina-associated domain are larger for loop apexes mapping closest to nuclear speckles, suggesting the possibility of conservation of speckle-associated regions. To facilitate comparison of genome organization by TSA-seq, we reduced required cell numbers 10- to 20-fold for TSA-seq by deliberately saturating protein-labeling while preserving distance mapping by the still unsaturated DNA-labeling. Only ∼10% of the genome shows statistically significant shifts in relative nuclear speckle distances in pair-wise comparisons between human cell lines (H1, HFF, HCT116, K562); however, these moderate shifts in nuclear speckle distances tightly correlate with changes in cell type-specific gene expression. Similarly, half of heat shock-induced gene loci already preposition very close to nuclear speckles, with the remaining positioned near or at intermediate distance (HSPH1) to nuclear speckles but shifting even closer with transcriptional induction. Speckle association together with chromatin decondensation correlates with expression amplification upon HSPH1 activation. Our results demonstrate a largely "hardwired" genome organization with specific genes moving small mean distances relative to speckles during cell differentiation or a physiological transition, suggesting an important role of nuclear speckles in gene expression regulation.

10.
J Cell Biol ; 219(9)2020 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-32609799

RESUMO

We present a simple ratio method to infer protein composition within cellular structures using proximity labeling approaches but compensating for the diffusion of free radicals. We used tyramide signal amplification (TSA) and label-free mass spectrometry (MS) to compare proteins in nuclear speckles versus centromeres. Our "TSA-MS ratio" approach successfully identified known nuclear speckle proteins. For example, 96% and 67% of proteins in the top 30 and 100 sorted proteins, respectively, are known nuclear speckle proteins, including proteins that we validated here as enriched in nuclear speckles. We show that MFAP1, among the top 20 in our list, forms droplets under certain circumstances and that MFAP1 expression levels modulate the size, stability, and dynamics of nuclear speckles. Localization of MFAP1 and its binding partner, PRPF38A, in droplet-like nuclear bodies precedes formation of nuclear speckles during telophase. Our results update older proteomic studies of nuclear speckles and should provide a useful reference dataset to guide future experimental dissection of nuclear speckle structure and function.


Assuntos
Núcleo Celular/metabolismo , Tiramina/metabolismo , Animais , Células CHO , Linhagem Celular , Cricetulus , Humanos , Espectrometria de Massas/métodos , Proteínas Nucleares/metabolismo , Proteômica/métodos , Fatores de Processamento de RNA/metabolismo
12.
ACS Synth Biol ; 9(5): 1100-1116, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32216371

RESUMO

Achieving stable expression of a single transgene in mammalian cells remains challenging; even more challenging is obtaining simultaneous stable expression of multiple transgenes at reproducible, relative expression levels. Previously, we attained copy-number-dependent, chromosome-position-independent expression of reporter minigenes by embedding them within a BAC "scaffold" containing the mouse Msh3-Dhfr locus (DHFR BAC). Here, we extend this "BAC TG-EMBED" approach. First, we report a toolkit of endogenous promoters capable of driving transgene expression over a 0.01- to 5-fold expression range relative to the CMV promoter, allowing fine-tuning of relative expression levels of multiple reporter genes. Second, we demonstrate little variation in expression level and long-term expression stability of a reporter gene embedded in BACs containing either transcriptionally active or inactive genomic regions, making the choice of BAC scaffolds more flexible. Third, we present a novel BAC assembly scheme, "BAC-MAGIC", for inserting multiple transgenes into BAC scaffolds, which is much more time-efficient than traditional galK-based methods. As a proof-of-principle for our improved BAC TG-EMBED toolkit, we simultaneously fluorescently labeled three nuclear compartments at reproducible, relative intensity levels in 94% of stable clones after a single transfection using a DHFR BAC scaffold containing 4 transgenes assembled with BAC-MAGIC. Our extended BAC TG-EMBED toolkit and BAC-MAGIC method provide an efficient, versatile platform for stable simultaneous expression of multiple transgenes at reproducible, relative levels.


Assuntos
Cromossomos Artificiais Bacterianos , Engenharia Genética/métodos , Transgenes/genética , Animais , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Camundongos , Microscopia de Fluorescência , Proteína 3 Homóloga a MutS/genética , Células NIH 3T3 , Regiões Promotoras Genéticas , Tetra-Hidrofolato Desidrogenase/genética , Transfecção
13.
J Cell Biol ; 219(1)2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31757787

RESUMO

Many active genes reproducibly position near nuclear speckles, but the functional significance of this positioning is unknown. Here we show that HSPA1B BAC transgenes and endogenous Hsp70 genes turn on 2-4 min after heat shock (HS), irrespective of their distance to speckles. However, both total HSPA1B mRNA counts and nascent transcript levels measured adjacent to the transgene are approximately twofold higher for speckle-associated alleles 15 min after HS. Nascent transcript level fold-increases for speckle-associated alleles are 12-56-fold and 3-7-fold higher 1-2 h after HS for HSPA1B transgenes and endogenous genes, respectively. Severalfold higher nascent transcript levels for several Hsp70 flanking genes also correlate with speckle association at 37°C. Live-cell imaging reveals that HSPA1B nascent transcript levels increase/decrease with speckle association/disassociation. Initial investigation reveals that increased nascent transcript levels accompanying speckle association correlate with reduced exosome RNA degradation and larger Ser2p CTD-modified RNA polymerase II foci. Our results demonstrate stochastic gene expression dependent on positioning relative to a liquid-droplet nuclear compartment through "gene expression amplification."


Assuntos
Núcleo Celular/genética , Amplificação de Genes , Proteínas de Choque Térmico HSP70/genética , Resposta ao Choque Térmico , Proteínas Nucleares/genética , Transcrição Gênica , Animais , Células CHO , Núcleo Celular/metabolismo , Cricetulus , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , Corpos de Inclusão Intranuclear , Proteínas Nucleares/metabolismo , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ativação Transcricional
14.
Curr Opin Genet Dev ; 55: 91-99, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31394307

RESUMO

Higher eukaryotic cell nuclei are highly compartmentalized into bodies and structural assemblies of specialized functions. Nuclear speckles/IGCs are one of the most prominent nuclear bodies, yet their functional significance remains largely unknown. Recent advances in sequence-based mapping of nuclear genome organization now provide genome-wide analysis of chromosome organization relative to nuclear speckles. Here we review older microscopy-based studies on a small number of genes with the new genomic mapping data suggesting a significant fraction of the genome is almost deterministically positioned near nuclear speckles. Both microscopy and genomic-based approaches support the concept of the nuclear speckle periphery as a major active chromosomal compartment which may play an important role in fine-tuning gene regulation.


Assuntos
Núcleo Celular/genética , Cromossomos/genética , Regulação da Expressão Gênica , Genoma , Proteínas Nucleares/metabolismo , Animais , Núcleo Celular/metabolismo , Humanos , Proteínas Nucleares/genética , Transcrição Gênica
15.
J Cell Sci ; 132(8)2019 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-30858197

RESUMO

Although the formation of RNA-protein bodies has been studied intensively, their mobility and how their number and size are regulated are still poorly understood. Here, we show significantly increased mobility of nuclear speckles after transcriptional inhibition, including long-range directed motion of one speckle towards another speckle, terminated by speckle fusion, over distances up to 4 µm and with velocities between 0.2 µm/min and 1.5 µm/min. Frequently, three or even four speckles follow very similar paths, with new speckles appearing along the path followed by a preceding speckle. Speckle movements and fusion events contribute to fewer, but larger, speckles after transcriptional inhibition. These speckle movements are not actin dependent, but occur within chromatin-depleted channels enriched with small granules containing the speckle marker protein SON. Similar long-range speckle movements and fusion events were observed after heat shock or heavy metal stress, and during late G2 and early prophase. Our observations suggest a mechanism for long-range, directional nuclear speckle movements, contributing to overall regulation of nuclear speckle number and size as well as overall nuclear organization. This article has an associated First Person interview with the first author of the paper.


Assuntos
Resposta ao Choque Térmico , Corpos de Inclusão Intranuclear/metabolismo , Ativação Transcricional , Transgenes , Actinas/química , Actinas/metabolismo , Animais , Células CHO , Cromatina/genética , Cromatina/metabolismo , Cricetulus , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/metabolismo
16.
J Cell Biol ; 217(11): 4025-4048, 2018 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-30154186

RESUMO

While nuclear compartmentalization is an essential feature of three-dimensional genome organization, no genomic method exists for measuring chromosome distances to defined nuclear structures. In this study, we describe TSA-Seq, a new mapping method capable of providing a "cytological ruler" for estimating mean chromosomal distances from nuclear speckles genome-wide and for predicting several Mbp chromosome trajectories between nuclear compartments without sophisticated computational modeling. Ensemble-averaged results in K562 cells reveal a clear nuclear lamina to speckle axis correlated with a striking spatial gradient in genome activity. This gradient represents a convolution of multiple spatially separated nuclear domains including two types of transcription "hot zones." Transcription hot zones protruding furthest into the nuclear interior and positioning deterministically very close to nuclear speckles have higher numbers of total genes, the most highly expressed genes, housekeeping genes, genes with low transcriptional pausing, and super-enhancers. Our results demonstrate the capability of TSA-Seq for genome-wide mapping of nuclear structure and suggest a new model for spatial organization of transcription and gene expression.


Assuntos
Mapeamento Cromossômico , Simulação por Computador , Regulação da Expressão Gênica/fisiologia , Genoma Humano , Lâmina Nuclear/metabolismo , Transcrição Gênica/fisiologia , Estudo de Associação Genômica Ampla , Humanos , Células K562 , Lâmina Nuclear/genética
17.
Gene Ther ; 25(5): 376-391, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29930343

RESUMO

Reproducible and stable transgene expression is an important goal in both basic research and biotechnology, with each application demanding a range of transgene expression. Problems in achieving stable transgene expression include multi-copy transgene silencing, chromosome-position effects, and loss of expression during long-term culture, induced cell quiescence, and/or cell differentiation. Previously, we described the "BAC TG-EMBED" method for copy-number dependent, chromosome position-independent expression of embedded transgenes within a BAC containing ~170 kb of the mouse Dhfr locus. Here we demonstrate wider applicability of the method by identifying a BAC and promoter combination that drives reproducible, copy-number dependent, position-independent transgene expression even after induced quiescence and/or cell differentiation into multiple cell types. Using a GAPDH BAC containing ~200 kb of the human GAPDH gene locus and a 1.2 kb human UBC promoter, we achieved stable GFP-ZeoR reporter expression in mouse NIH 3T3 cells after low-serum-induced cell cycle arrest or differentiation into adipocytes. More notably, GFP-ZeoR expression remained stable and copy-number dependent even after differentiation of mouse ESCs into several distinct lineages. These results highlight the potential use of BAC TG-EMBED as an expression platform for high-level but stable, long-term expression of transgene independent of cell proliferative or differentiated state.


Assuntos
Cromossomos Artificiais Bacterianos , Transfecção/métodos , Transgenes , Animais , Diferenciação Celular/genética , Técnicas de Transferência de Genes , Genes Reporter , Vetores Genéticos , Proteínas de Fluorescência Verde/genética , Humanos , Camundongos , Células NIH 3T3 , Regiões Promotoras Genéticas , Tetra-Hidrofolato Desidrogenase/genética , Transformação Genética
18.
Nucleic Acids Res ; 46(17): e100, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-29912475

RESUMO

Nuclear organization has an important role in determining genome function; however, it is not clear how spatiotemporal organization of the genome relates to functionality. To elucidate this relationship, a method for tracking any locus of interest is desirable. Recently clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) or transcription activator-like effectors were adapted for imaging endogenous loci; however, they are mostly limited to visualization of repetitive regions. Here, we report an efficient and scalable method named SHACKTeR (Short Homology and CRISPR/Cas9-mediated Knock-in of a TetO Repeat) for live cell imaging of specific chromosomal regions without the need for a pre-existing repetitive sequence. SHACKTeR requires only two modifications to the genome: CRISPR/Cas9-mediated knock-in of an optimized TetO repeat and its visualization by TetR-EGFP expression. Our simplified knock-in protocol, utilizing short homology arms integrated by polymerase chain reaction, was successful at labeling 10 different loci in HCT116 cells. We also showed the feasibility of knock-in into lamina-associated, heterochromatin regions, demonstrating that these regions prefer non-homologous end joining for knock-in. Using SHACKTeR, we were able to observe DNA replication at a specific locus by long-term live cell imaging. We anticipate the general applicability and scalability of our method will enhance causative analyses between gene function and compartmentalization in a high-throughput manner.


Assuntos
Proteínas de Bactérias/genética , Sistemas CRISPR-Cas , Proteínas de Transporte/genética , Técnicas de Introdução de Genes/métodos , Hibridização in Situ Fluorescente/métodos , Imagem Individual de Molécula/métodos , Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Reparo do DNA por Junção de Extremidades/genética , Expansão das Repetições de DNA/genética , Células HCT116 , Células HEK293 , Humanos , Células K562 , Organismos Geneticamente Modificados , Homologia de Sequência do Ácido Nucleico
19.
Nature ; 552(7684): 278, 2017 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-29168505

RESUMO

This corrects the article DOI: 10.1038/nature23884.

20.
Nature ; 549(7671): 219-226, 2017 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-28905911

RESUMO

The 4D Nucleome Network aims to develop and apply approaches to map the structure and dynamics of the human and mouse genomes in space and time with the goal of gaining deeper mechanistic insights into how the nucleus is organized and functions. The project will develop and benchmark experimental and computational approaches for measuring genome conformation and nuclear organization, and investigate how these contribute to gene regulation and other genome functions. Validated experimental technologies will be combined with biophysical approaches to generate quantitative models of spatial genome organization in different biological states, both in cell populations and in single cells.


Assuntos
Núcleo Celular/genética , Núcleo Celular/fisiologia , Genoma , Modelos Moleculares , Imagem Molecular/métodos , Análise Espaço-Temporal , Animais , Linhagem Celular , Cromatina/genética , Cromatina/metabolismo , Cromossomos/química , Cromossomos/genética , Cromossomos/metabolismo , Genômica/métodos , Genômica/organização & administração , Objetivos , Humanos , Disseminação de Informação , Camundongos , Modelos Biológicos , Reprodutibilidade dos Testes , Análise de Célula Única
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...