Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant J ; 115(3): 690-708, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37195091

RESUMO

Polyploidy is a persistent phenomenon in angiosperm genome evolution that is hypothesized to have contributed to the diversity of extant flowering plants. Brassica napus, one of the world's most important angiosperm oilseed species, originated from the interspecific hybridization of Brassica rapa (An ) and Brassica oleracea (Cn ). While the trends of genome dominance in transcriptomics are beginning to emerge, less is known about the epigenetic and small RNA landscapes in polyploids during reproductive development. The seed is the pivotal developmental transition into the new sporophytic generation, and experiences substantial epigenetic modifications over time. Here, we investigated the prevalence of bias in the contexts of DNA methylation and small interfering (si)RNA profiles in both subgenomes (An and Cn ), as well as the ancestral fractionated genomes across B. napus seed development. We report ubiquitous Cn subgenome bias of siRNA expression and cytosine methylation, with DNA methylation being particularly abundant on gene promoters in the Cn subgenome. Further, we provide evidence that siRNA transcriptional patterns were conserved within the ancestral triplicated subgenomes of B. napus, but not across the An and Cn subgenomes. We discuss how methylation patterns in the B. napus seed relate to genes, promoter regions, siRNA loci and transposable elements through the lens of genome fractionation and polyploidization. Taken together we provide evidence for epigenetic regulation selectively silencing the Cn subgenome during seed development, and explore the impact of genome fractionation on the epigenetic components of the B. napus seed.


Assuntos
Brassica napus , Brassica napus/metabolismo , Metilação de DNA/genética , Epigênese Genética/genética , Genoma de Planta/genética , Genômica , Poliploidia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Sementes/genética , Sementes/metabolismo
2.
Sci Rep ; 13(1): 6477, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-37081036

RESUMO

The causative agent of white mold, Sclerotinia sclerotiorum, is capable of infecting over 600 plant species and is responsible for significant crop losses across the globe. Control is currently dependent on broad-spectrum chemical agents that can negatively impact the agroecological environment, presenting a need to develop alternative control measures. In this study, we developed transgenic Arabidopsis thaliana (AT1703) expressing hairpin (hp)RNA to silence S. sclerotiorum ABHYDROLASE-3 and slow infection through host induced gene silencing (HIGS). Leaf infection assays show reduced S. sclerotiorum lesion size, fungal load, and ABHYDROLASE-3 transcript abundance in AT1703 compared to wild-type Col-0. To better understand how HIGS influences host-pathogen interactions, we performed global RNA sequencing on AT1703 and wild-type Col-0 directly at the site of S. sclerotiorum infection. RNA sequencing data reveals enrichment of the salicylic acid (SA)-mediated systemic acquired resistance (SAR) pathway, as well as transcription factors predicted to regulate plant immunity. Using RT-qPCR, we identified predicted interacting partners of ABHYDROLASE-3 in the polyamine synthesis pathway of S. sclerotiorum that demonstrate co-reduction with ABHYDROLASE-3 transcript levels during infection. Together, these results demonstrate the utility of HIGS technology in slowing S. sclerotiorum infection and provide insight into the role of ABHYDROLASE-3 in the A. thaliana-S. sclerotiorum pathosystem.


Assuntos
Arabidopsis , Ascomicetos , Interferência de RNA , RNA de Plantas/metabolismo , Ascomicetos/genética , Fatores de Transcrição/metabolismo , Arabidopsis/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
3.
Front Plant Sci ; 14: 1299461, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38239218

RESUMO

Fusarium head blight (FHB) is a devastating fungal disease responsible for significant yield losses in wheat and other cereal crops across the globe. FHB infection of wheat spikes results in grain contamination with mycotoxins, reducing both grain quality and yield. Breeding strategies have resulted in the production of FHB-resistant cultivars, however, the underlying molecular mechanisms of resistance in the majority of these cultivars are still poorly understood. To improve our understanding of FHB-resistance, we performed a transcriptomic analysis of FHB-resistant AC Emerson, FHB-moderately resistant AC Morley, and FHB-susceptible CDC Falcon in response to Fusarium graminearum. Wheat spikelets located directly below the point of inoculation were collected at 7-days post inoculation (dpi), where dual RNA-sequencing was performed to explore differential expression patterns between wheat cultivars in addition to the challenging pathogen. Differential expression analysis revealed distinct defense responses within FHB-resistant cultivars including the enrichment of physical defense through the lignin biosynthesis pathway, and DON detoxification through the activity of UDP-glycosyltransferases. Nucleotide sequence variants were also identified broadly between these cultivars with several variants being identified within differentially expressed putative defense genes. Further, F. graminearum demonstrated differential expression of mycotoxin biosynthesis pathways during infection, leading to the identification of putative pathogenicity factors.

4.
AoB Plants ; 14(5): plac040, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36196395

RESUMO

Drought stress negatively impacts the health of long-lived trees. Understanding the genetic mechanisms that underpin response to drought stress is requisite for selecting or enhancing climate change resilience. We aimed to determine how hybrid poplars respond to prolonged and uniform exposure to drought; how responses to moderate and more severe growth-limiting drought stresses differed; and how drought responses change throughout the day. We established hybrid poplar trees (Populus × 'Okanese') from unrooted stem cutting with abundant soil moisture for 6 weeks. We then withheld water to establish well-watered, moderate and severe growth-limiting drought conditions. These conditions were maintained for 3 weeks during which growth was monitored. We then measured photosynthetic rates and transcriptomes of leaves that had developed during the drought treatments at two times of day. The moderate and severe drought treatments elicited distinct changes in growth and development, photosynthetic rates and global transcriptome profiles. Notably, the time of day of sampling produced the strongest effect in the transcriptome data. The moderate drought treatment elicited global transcriptome changes that were intermediate to the severe and well-watered treatments in the early evening but did not elicit a strong drought response in the morning. Stable drought conditions that are sufficient to limit plant growth elicit distinct transcriptional profiles depending on the degree of water limitation and on the time of day at which they are measured. There appears to be a limited number of genes and functional gene categories that are responsive to all of the tested drought conditions in this study emphasizing the complex nature of drought regulation in long-lived trees.

5.
PLoS One ; 17(8): e0261102, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36018839

RESUMO

Sclerotinia sclerotiorum is a pathogenic fungus that infects hundreds of crop species, causing extensive yield loss every year. Chemical fungicides are used to control this phytopathogen, but with concerns about increasing resistance and impacts on non-target species, there is a need to develop alternative control measures. In the present study, we engineered Brassica napus to constitutively express a hairpin (hp)RNA molecule to silence ABHYRDOLASE-3 in S. sclerotiorum. We demonstrate the potential for Host Induced Gene Silencing (HIGS) to protect B. napus from S. sclerotiorum using leaf, stem and whole plant infection assays. The interaction between the transgenic host plant and invading pathogen was further characterized at the molecular level using dual-RNA sequencing and at the anatomical level through microscopy to understand the processes and possible mechanisms leading to increased tolerance to this damaging necrotroph. We observed significant shifts in the expression of genes relating to plant defense as well as cellular differences in the form of structural barriers around the site of infection in the HIGS-protected plants. Our results provide proof-of-concept that HIGS is an effective means of limiting damage caused by S. sclerotiorum to the plant and demonstrates the utility of this biotechnology in the development of resistance against fungal pathogens.


Assuntos
Brassica napus , Ascomicetos , Resistência à Doença , Inativação Gênica , Doenças das Plantas , Plantas Geneticamente Modificadas , Índice de Gravidade de Doença
6.
J Exp Bot ; 73(19): 6697-6710, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-35961003

RESUMO

White mold is caused by the fungal pathogen Sclerotinia sclerotiorum and leads to rapid and significant loss in plant yield. Among its many brassicaceous hosts, including Brassica napus (canola) and Arabidopsis, the response of individual tissue layers directly at the site of infection has yet to be explored. Using laser microdissection coupled with RNA sequencing, we profiled the epidermis, mesophyll, and vascular leaf tissue layers of B. napus in response to S. sclerotiorum. High-throughput tissue-specific mRNA sequencing increased the total number of detected transcripts compared with whole-leaf assessments and provided novel insight into the conserved and specific roles of ontogenetically distinct leaf tissue layers in response to infection. When subjected to pathogen infection, the epidermis, mesophyll, and vasculature activate both specific and shared gene sets. Putative defense genes identified through transcription factor network analysis were then screened for susceptibility against necrotrophic, hemi-biotrophic, and biotrophic pathogens. Arabidopsis deficient in PR5-like RECEPTOR KINASE (PR5K) mRNA levels were universally susceptible to all pathogens tested and were further characterized to identify putative interacting partners involved in the PR5K signaling pathway. Together, these data provide insight into the complexity of the plant defense response directly at the site of infection.


Assuntos
Arabidopsis , Brassica napus , Brassica napus/metabolismo , Arabidopsis/genética , Doenças das Plantas/microbiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Imunidade Vegetal/genética
7.
Plant J ; 109(3): 477-489, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34786793

RESUMO

We profiled the global gene expression landscape across the reproductive lifecycle of Brassica napus. Comparative analysis of this nascent amphidiploid revealed the contribution of each subgenome to plant reproduction. Whole-genome transcription factor networks identified BZIP11 as a transcriptional regulator of early B. napus seed development. Knockdown of BZIP11 using RNA interference resulted in a similar reduction in gene activity of predicted gene targets, and a reproductive-lethal phenotype. Global mRNA profiling revealed lower accumulation of Cn subgenome transcripts relative to the An subgenome. Subgenome-specific transcription factor networks identified distinct transcription factor families enriched in each of the An and Cn subgenomes early in seed development. Analysis of laser-microdissected seed subregions further reveal subgenome expression dynamics in the embryo, endosperm and seed coat of early stage seeds. Transcription factors predicted to be regulators encoded by the An subgenome are expressed primarily in the seed coat, whereas regulators encoded by the Cn subgenome were expressed primarily in the embryo. Data suggest subgenome bias are characteristic features of the B. napus seed throughout development, and that such bias might not be universal across the embryo, endosperm and seed coat of the developing seed. Transcriptional networks spanning both the An and Cn genomes of the whole B. napus seed can identify valuable targets for seed development research and that -omics level approaches to studying gene regulation in B. napus can benefit from both broad and high-resolution analyses.


Assuntos
Brassica napus/crescimento & desenvolvimento , Brassica napus/genética , Desenvolvimento Vegetal/genética , Sementes/crescimento & desenvolvimento , Sementes/genética , Fatores de Transcrição/genética , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Genoma de Planta
8.
Front Microbiol ; 12: 632280, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33643263

RESUMO

The microbial composition of the rhizosphere soil could be an important determinant of crop yield, pathogen resistance, and other beneficial attributes in plants. However, little is known about the impact of cropping sequences on microbial community dynamics, especially in economically important species like soybean. Using 2-year crop sequences of corn-soybean, canola-soybean, and soybean-soybean, we investigated how crops from the previous growing season influenced the structure of the microbiome in both the bulk soil and soybean rhizosphere. A combination of marker-based Illumina sequencing and bioinformatics analyses was used to show that bacterial species richness and evenness in the soybean rhizosphere soil were similar following canola and soybean compared to a previous corn sequence. However, fungal species richness and evenness remained unaffected by crop sequence. In addition, bacterial and fungal species diversity in both the bulk and soybean rhizosphere soil were not influenced by crop sequence. Lastly, the corn-soybean sequence significantly differed in the relative abundance of certain bacterial and fungal classes in both the soybean rhizosphere and bulk soil. While canola-soybean and a continuous soybean sequence did not, suggesting that a preceding corn sequence may reduce the occurrence of overall bacterial and fungal community members. For the present study, crop sequence impacts bacterial diversity and richness in both the bulk soil and soybean rhizosphere soil whereas fungal diversity and richness are resilient to crop sequence practices. Together, these findings could help drive decision making for annual crop and soil management practices.

9.
Plants (Basel) ; 9(12)2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33339102

RESUMO

Efforts to develop more environmentally friendly alternatives to traditional broad-spectrum pesticides in agriculture have recently turned to RNA interference (RNAi) technology. With the built-in, sequence-specific knockdown of gene targets following delivery of double-stranded RNA (dsRNA), RNAi offers the promise of controlling pests and pathogens without adversely affecting non-target species. Significant advances in the efficacy of this technology have been observed in a wide range of species, including many insect pests and fungal pathogens. Two different dsRNA application methods are being developed. First, host induced gene silencing (HIGS) harnesses dsRNA production through the thoughtful and precise engineering of transgenic plants and second, spray induced gene silencing (SIGS) that uses surface applications of a topically applied dsRNA molecule. Regardless of the dsRNA delivery method, one aspect that is critical to the success of RNAi is the ability of the target organism to internalize the dsRNA and take advantage of the host RNAi cellular machinery. The efficiency of dsRNA uptake mechanisms varies across species, and in some uptake is negligible, rendering them effectively resistant to this new generation of control technologies. If RNAi-based methods of control are to be used widely, it is critically important to understand the mechanisms underpinning dsRNA uptake. Understanding dsRNA uptake mechanisms will also provide insight into the design and formulation of dsRNAs for improved delivery and provide clues into the development of potential host resistance to these technologies.

10.
Sci Rep ; 10(1): 12773, 2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32728195

RESUMO

RNA interference (RNAi) technologies have recently been developed to control a growing number of agronomically significant fungal phytopathogens, including the white mold pathogen, Sclerotinia sclerotiorum. Exposure of this fungus to exogenous double-stranded RNA (dsRNA) results in potent RNAi-mediated knockdown of target genes' transcripts, but it is unclear how the dsRNA can enter the fungal cells. In nematodes, specialized dsRNA transport proteins such as SID-1 facilitate dsRNA uptake, but for many other eukaryotes in which the dsRNA uptake mechanisms have been examined, endocytosis appears to mediate the uptake process. In this study, using live cell imaging, transgenic fungal cultures and endocytic inhibitors, we determined that the uptake mechanism in S. sclerotiorum occurs through clathrin-mediated endocytosis. RNAi-mediated knockdown of several clathrin-mediated endocytic genes' transcripts confirmed the involvement of this cellular uptake process in facilitating RNAi in this fungus. Understanding the mode of dsRNA entry into the fungus will prove useful in designing and optimizing future dsRNA-based control methods and in anticipating possible mechanisms by which phytopathogens may develop resistance to this novel category of fungicides.


Assuntos
Ascomicetos/metabolismo , Clatrina/química , Endocitose , Interferência de RNA , RNA de Cadeia Dupla/química , Animais , Transporte Biológico , Células CHO , Cricetulus , Citoplasma/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Microscopia Confocal , Transgenes
11.
PLoS One ; 15(2): e0226232, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32109244

RESUMO

Pseudomonas chlororaphis strain PA23 is a biocontrol agent capable of protecting canola from stem rot disease caused by the fungal pathogen Sclerotinia sclerotiorum. PA23 produces several inhibitory compounds that are under control of a complex regulatory network. Included in this cascade is the PhzRI quorum sensing (QS) system, which plays an essential role in PA23 biocontrol, as well as CsaRI and AurRI, which have not yet been characterized in PA23. The focus of the current study was to employ RNA sequencing to explore the spectrum of PA23 genes under QS control. In this work, we investigated genes under the control of the main QS transcriptional regulator, PhzR, as well as those differentially expressed in an AHL-deficient strain, PA23-6863, which constitutively expresses an AiiA lactonase, rendering the strain QS defective. Transcriptomic profiling revealed 545 differentially expressed genes (365 downregulated; 180 upregulated) in the phzR mutant and 534 genes (382 downregulated; 152 upregulated) in the AHL-deficient PA23-6863. In both strains, decreased expression of phenazine, pyrrolnitrin, and exoprotease biosynthetic genes was observed. We have previously reported that QS activates expression of these genes and their encoded products. In addition, elevated siderophore and decreased chitinase gene expression was observed in the QS-deficient stains, which was confirmed by phenotypic analysis. Inspection of the promoter regions revealed the presence of "phz-box" sequences in only 58 of the 807 differentially expressed genes, suggesting that much of the QS regulon is indirectly regulated. Consistent with this notion, 41 transcriptional regulators displayed altered expression in one or both of the QS-deficient strains. Collectively, our findings indicate that QS governs expression of approximately 13% of the PA23 genome affecting diverse functions ranging from secondary metabolite production to general metabolism.


Assuntos
Controle Biológico de Vetores , Pseudomonas chlororaphis/genética , Percepção de Quorum/genética , Regulon/genética , Proteínas de Bactérias/genética , Hidrolases de Éster Carboxílico/deficiência , Movimento Celular/genética , Quitinases/genética , Regulação Bacteriana da Expressão Gênica , Proteínas Mutantes , RNA-Seq , Sideróforos/genética , Transativadores/genética , Transcriptoma
12.
J Integr Plant Biol ; 61(5): 639-650, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30941858

RESUMO

Brassica napus L. (canola) is one of the world's most economically important oilseeds. Despite our growing knowledge of Brassica genetics, we still know little about the genes and gene regulatory networks underlying early seed development. In this work, we use laser microdissection coupled with RNA sequencing to profile gene activity of both the maternal and filial subregions of the globular seed. We find subregions of the chalazal end including the chalazal endosperm, chalazal proliferating tissue, and chalazal seed coat, have unique transcriptome profiles associated with hormone biosynthesis and polysaccharide metabolism. We confirm that the chalazal seed coat is uniquely enriched for sucrose biosynthesis and transport, and that the chalazal endosperm may function as an important regulator of the maternal region through brassinosteroid synthesis. The chalazal proliferating tissue, a poorly understood subregion, was specifically enriched in transcripts associated with megasporogenesis and trehalose biosynthesis, suggesting this ephemeral structure plays an important role in both sporophytic development and carbon nutrient balance, respectively. Finally, compartmentalization of transcription factors and their regulatory circuits has uncovered previously unknown roles for the chalazal pole in early seed development.


Assuntos
Brassica napus/genética , Sementes/genética , Transcriptoma/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética
13.
Plant Physiol Biochem ; 139: 350-365, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30952087

RESUMO

Over-expression of the corn phytoglobin ZmPgb1.2 increases tolerance to waterlogging, while suppression of ZmPgb1.2 compromises plant growth. To unravel compartment-specific transcriptional changes evoked by ZmPgb1.2 during hypoxia, laser micro-dissected sub-regions from waterlogged roots of WT and ZmPgb1.2 overexpressing [ZmPgb1.2(S)] plants were probed for global transcriptional analysis using next generation RNA sequencing. These sub-regions included compartments within the meristematic, elongation, and maturation zone. Of the 149 genes differentially expressed by the up-regulation of ZmPgb1.2, 78 occurred within the meristematic region and included genes involved in jasmonic acid synthesis and response, ascorbic acid metabolism, and ethylene signalling. The ZmPgb1.2 regulation of these genes, discussed in the context of known functions of Pgbs, was further validated by monitoring their expression in meristematic cells of waterlogged roots suppressing ZmPgb1.2. Of the 27 genes differentially expressed by the over-expression of ZmPgb1.2 in the elongation zone, pyruvate kinase and alcohol dehydrogenase showed an expression pattern correlated to the level of ZmPgb1.2 in the tissue. The transcriptional induction of these two enzymes in hypoxic domains of the elongation zone over-expressing ZmPgb1.2 suggests the activation of the fermentation pathway which might be required to sustain metabolic flux and production of ATP in support of cell elongation.


Assuntos
Hemoglobinas/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Zea mays/metabolismo , Regulação da Expressão Gênica de Plantas , Meristema/metabolismo
14.
Mol Plant Microbe Interact ; 32(8): 1001-1012, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30938576

RESUMO

Our study investigated disease resistance in the Brassica napus-Leptosphaeria maculans pathosystem using a combination of laser microdissection, dual RNA sequencing, and physiological validations of large-scale gene sets. The use of laser microdissection improved pathogen detection and identified putative L. maculans effectors and lytic enzymes operative during host colonization. Within 24 h of inoculation, we detected large shifts in gene activity in resistant cotyledons associated with jasmonic acid and calcium signaling pathways that accelerated the plant defense response. Sequencing data were validated through the direct quantification of endogenous jasmonic acid levels. Additionally, resistance against L. maculans was abolished when the calcium chelator EGTA was applied to the inoculation site, providing physiological evidence of the role of calcium in B. napus immunity against L. maculans. We integrated gene expression data with all available information on cis-regulatory elements and transcription factor binding affinities to better understand the gene regulatory networks underpinning plant resistance to hemibiotrophic pathogens. These in silico analyses point to early cellular reprogramming during host immunity that are coordinated by CAMTA, BZIP, and bHLH transcription factors. Together, we provide compelling genetic and physiological evidence into the programming of plant resistance against fungal pathogens.


Assuntos
Ascomicetos , Brassica napus , Resistência à Doença , Interações Hospedeiro-Patógeno , Transcriptoma , Ascomicetos/fisiologia , Brassica napus/genética , Brassica napus/imunologia , Brassica napus/microbiologia , Resistência à Doença/genética , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia
15.
Phytochemistry ; 156: 142-150, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30296707

RESUMO

The biosynthesis of two polyketides, atranorin and fumarprotocetraric acid, produced from a lichen-forming fungus, Cladonia rangiferina (L.) F. H. Wigg. was correlated with the expression of eight fungal genes (CrPKS1, CrPKS3, CrPKS16, Catalase (CAT), Sugar Transporter (MFsug), Dioxygenase (YQE1), C2H2 Transcription factor (C2H2), Transcription Factor PacC (PacC), which are thought to be involved in polyketide biosynthesis, and one algal gene, NAD-dependent deacetylase sirtuin 2 (AsNAD)), using laser microdissection (LMD). The differential gene expression levels within the thallus tissue layers demonstrate that the most active region for potential polyketide biosynthesis within the lichen is the outer apical region proximal to the photobiont but some expression also occurs in reproductive tissue. This is the first study using laser microdissection to explore gene expression of these nine genes and their location of expression; it provides a proof-of-concept for future experiments exploring tissue-specific gene expression within lichens; and it highlights the utility of LMD for use in lichen systems.


Assuntos
Ascomicetos/enzimologia , Lasers , Líquens/microbiologia , Microdissecção , Policetídeo Sintases/química , Ascomicetos/metabolismo , Líquens/genética , Líquens/metabolismo , Estrutura Molecular , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo
16.
Curr Biol ; 28(17): 2718-2729.e5, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30146155

RESUMO

The capacity for sustained cell division within the plant meristem is a critical determinant of organ structure and performance. This capacity is diminished in mutants lacking the microtubule-associated protein CLASP and when brassinosteroid signaling is increased. Here, we discovered that CLASP is both targeted by and promotes activity of the brassinosteroid pathway in Arabidopsis root apical meristems. We show that enhanced brassinosteroid signaling reduces CLASP transcript and protein levels, dramatically shifts microtubule organization, and reduces the number of cells in the meristem. In turn, CLASP, which tethers sorting nexin 1 vesicles to microtubules, sustains brassinosteroid signaling by fostering retrieval of endocytosed BRI1 receptors to the plasma membrane. clasp-1 null mutants have dampened brassinosteroid (BR)-mediated transcriptional activity and responses. Global transcript profiling confirmed the collapse of cell-cycle activity in clasp-1 and identified CLASP-mediated hormone crosstalk. Together, these findings reveal an unprecedented form of negative feedback supporting meristem homeostasis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Brassinosteroides/metabolismo , Proliferação de Células/fisiologia , Meristema/fisiologia , Proteínas Associadas aos Microtúbulos/metabolismo , Raízes de Plantas/fisiologia , Proteínas de Arabidopsis/genética , Brefeldina A/farmacologia , Clonagem Molecular , Dinitrobenzenos/farmacologia , Regulação para Baixo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos , Transdução de Sinais , Sulfanilamidas/farmacologia
17.
Sci Rep ; 8(1): 7320, 2018 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-29743510

RESUMO

Sclerotinia sclerotiorum, the causal agent of white stem rot, is responsible for significant losses in crop yields around the globe. While our understanding of S. sclerotiorum infection is becoming clearer, genetic control of the pathogen has been elusive and effective control of pathogen colonization using traditional broad-spectrum agro-chemical protocols are less effective than desired. In the current study, we developed species-specific RNA interference-based control treatments capable of reducing fungal infection. Development of a target identification pipeline using global RNA sequencing data for selection and application of double stranded RNA (dsRNA) molecules identified single gene targets of the fungus. Using this approach, we demonstrate the utility of this technology through foliar applications of dsRNAs to the leaf surface that significantly decreased fungal infection and S. sclerotiorum disease symptoms. Select target gene homologs were also tested in the closely related species, Botrytis cinerea, reducing lesion size and providing compelling evidence of the adaptability and flexibility of this technology in protecting plants against devastating fungal pathogens.


Assuntos
Ascomicetos/genética , Ascomicetos/fisiologia , Botrytis/genética , Botrytis/fisiologia , Brassica napus/microbiologia , RNA de Cadeia Dupla/genética , Brassica napus/fisiologia , Ontologia Genética , Interferência de RNA , Homologia de Sequência do Ácido Nucleico
18.
Plant Mol Biol ; 97(1-2): 149-163, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29680877

RESUMO

KEY MESSAGE: Arabidopsis det1 mutants exhibit salt and osmotic stress resistant germination. This phenotype requires HY5, ABF1, ABF3, and ABF4. While DE-ETIOLATED 1 (DET1) is well known as a negative regulator of light development, here we describe how det1 mutants also exhibit altered responses to salt and osmotic stress, specifically salt and mannitol resistant germination. LONG HYPOCOTYL 5 (HY5) positively regulates both light and abscisic acid (ABA) signalling. We found that hy5 suppressed the det1 salt and mannitol resistant germination phenotype, thus, det1 stress resistant germination requires HY5. We then queried publically available microarray datasets to identify genes downstream of HY5 that were differentially expressed in det1 mutants. Our analysis revealed that ABA regulated genes, including ABA RESPONSIVE ELEMENT BINDING FACTOR 3 (ABF3), are downregulated in det1 seedlings. We found that ABF3 is induced by salt in wildtype seeds, while homologues ABF4 and ABF1 are repressed, and all three genes are underexpressed in det1 seeds. We then investigated the role of ABF3, ABF4, and ABF1 in det1 phenotypes. Double mutant analysis showed that abf3, abf4, and abf1 all suppress the det1 salt/osmotic stress resistant germination phenotype. In addition, abf1 suppressed det1 rapid water loss and open stomata phenotypes. Thus interactions between ABF genes contribute to det1 salt/osmotic stress response phenotypes.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Fatores de Transcrição de Zíper de Leucina Básica/genética , Germinação/genética , Proteínas Nucleares/genética , Arabidopsis/genética , Proteínas de Arabidopsis/fisiologia , Fatores de Transcrição de Zíper de Leucina Básica/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular , Mutação , Proteínas Nucleares/fisiologia , Pressão Osmótica , Estresse Fisiológico
19.
J Exp Bot ; 68(18): 5079-5091, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29036633

RESUMO

Brassica napus is one of the world's most valuable oilseeds and is under constant pressure by the necrotrophic fungal pathogen, Sclerotinia sclerotiorum, the causal agent of white stem rot. Despite our growing understanding of host pathogen interactions at the molecular level, we have yet to fully understand the biological processes and underlying gene regulatory networks responsible for determining disease outcomes. Using global RNA sequencing, we profiled gene activity at the first point of infection on the leaf surface 24 hours after pathogen exposure in susceptible (B. napus cv. Westar) and tolerant (B. napus cv. Zhongyou 821) plants. We identified a family of ethylene response factors that may contribute to host tolerance to S. sclerotiorum by activating genes associated with fungal recognition, subcellular organization, and redox homeostasis. Physiological investigation of redox homeostasis was further studied by quantifying cellular levels of the glutathione and ascorbate redox pathway and the cycling enzymes associated with host tolerance to S. sclerotiorum. Functional characterization of an Arabidopsis redox mutant challenged with the fungus provides compelling evidence into the role of the ascorbate-glutathione redox hub in the maintenance and enhancement of plant tolerance against fungal pathogens.


Assuntos
Ascomicetos/fisiologia , Brassica napus/genética , Redes Reguladoras de Genes , Interações Hospedeiro-Patógeno , Doenças das Plantas/microbiologia , Brassica napus/microbiologia , Brassica napus/fisiologia , Brassica napus/ultraestrutura , Etilenos/metabolismo , Oxirredução , Folhas de Planta/genética , Folhas de Planta/microbiologia , Folhas de Planta/fisiologia , Folhas de Planta/ultraestrutura , Caules de Planta/genética , Caules de Planta/microbiologia , Caules de Planta/fisiologia , Caules de Planta/ultraestrutura , Análise de Sequência de RNA
20.
BMC Genomics ; 18(1): 467, 2017 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-28629321

RESUMO

BACKGROUND: The biological control agent Pseudomonas chlororaphis PA23 is capable of protecting Brassica napus (canola) from the necrotrophic fungus Sclerotinia sclerotiorum via direct antagonism. While we have elucidated bacterial genes and gene products responsible biocontrol, little is known about how the host plant responds to bacterial priming on the leaf surface, including global changes in gene activity in the presence and absence of S. sclerotiorum. RESULTS: Application of PA23 to the aerial surfaces of canola plants reduced the number of S. sclerotiorum lesion-forming petals by 91.1%. RNA sequencing of the host pathogen interface showed that pretreatment with PA23 reduced the number of genes upregulated in response to S. sclerotiorum by 16-fold. By itself, PA23 activated unique defense networks indicative of defense priming. Genes encoding MAMP-triggered immunity receptors detecting flagellin and peptidoglycan were downregulated in PA23 only-treated plants, consistent with post-stimulus desensitization. Downstream, we observed reactive oxygen species (ROS) production involving low levels of H2O2 and overexpression of genes associated with glycerol-3-phosphate (G3P)-mediated systemic acquired resistance (SAR). Leaf chloroplasts exhibited increased thylakoid membrane structures and chlorophyll content, while lipid metabolic processes were upregulated. CONCLUSION: In addition to directly antagonizing S. sclerotiorum, PA23 primes the plant defense response through induction of unique local and systemic defense networks. This study provides novel insight into the effects of biocontrol agents applied to the plant phyllosphere. Understanding these interactions will aid in the development of biocontrol systems as an alternative to chemical pesticides for protection of important crop systems.


Assuntos
Brassica napus/genética , Brassica napus/microbiologia , Redes Reguladoras de Genes , Pseudomonas chlororaphis/fisiologia , Ascomicetos/fisiologia , Brassica napus/imunologia , Brassica napus/metabolismo , Cloroplastos/metabolismo , Imunidade Inata/genética , Controle Biológico de Vetores , Doenças das Plantas/microbiologia , Folhas de Planta/metabolismo , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...