Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEBS J ; 282(16): 3199-217, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26111549

RESUMO

Investigations regarding the chemistry and mechanism of action of 2-methyl-1,4-naphthoquinone (or menadione) derivatives revealed 3-phenoxymethyl menadiones as a novel anti-schistosomal chemical series. These newly synthesized compounds (1-7) and their difluoromethylmenadione counterparts (8, 9) were found to be potent and specific inhibitors of Schistosoma mansoni thioredoxin-glutathione reductase (SmTGR), which has been identified as a potential target for anti-schistosomal drugs. The compounds were also tested in enzymic assays using both human flavoenzymes, i.e. glutathione reductase (hGR) and selenium-dependent human thioredoxin reductase (hTrxR), to evaluate the specificity of the inhibition. Structure-activity relationships as well as physico- and electro-chemical studies showed a high potential for the 3-phenoxymethyl menadiones to inhibit SmTGR selectively compared to hGR and hTrxR enzymes, in particular those bearing an α-fluorophenol methyl ether moiety, which improves anti-schistosomal action. Furthermore, the (substituted phenoxy)methyl menadione derivative (7) displayed time-dependent SmTGR inactivation, correlating with unproductive NADPH-dependent redox cycling of SmTGR, and potent anti-schistosomal action in worms cultured ex vivo. In contrast, the difluoromethylmenadione analog 9, which inactivates SmTGR through an irreversible non-consuming NADPH-dependent process, has little killing effect in worms cultured ex vivo. Despite ex vivo activity, none of the compounds tested was active in vivo, suggesting that the limited bioavailability may compromise compound activity. Therefore, future studies will be directed toward improving pharmacokinetic properties and bioavailability.


Assuntos
Inibidores Enzimáticos/farmacologia , Complexos Multienzimáticos/antagonistas & inibidores , NADH NADPH Oxirredutases/antagonistas & inibidores , Naftoquinonas/farmacologia , Schistosoma mansoni/efeitos dos fármacos , Schistosoma mansoni/enzimologia , Esquistossomicidas/farmacologia , Animais , Linhagem Celular , Avaliação Pré-Clínica de Medicamentos , Eletroquímica , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Glutationa/química , Glutationa Redutase/antagonistas & inibidores , Humanos , Técnicas In Vitro , Camundongos , Naftoquinonas/síntese química , Naftoquinonas/química , Esquistossomose mansoni/tratamento farmacológico , Esquistossomose mansoni/parasitologia , Esquistossomicidas/síntese química , Esquistossomicidas/química , Relação Estrutura-Atividade , Tiorredoxina Dissulfeto Redutase/antagonistas & inibidores
2.
Antioxid Redox Signal ; 22(15): 1337-51, 2015 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-25714942

RESUMO

AIMS: Early phagocytosis of glucose-6-phosphate dehydrogenase (G6PD)-deficient erythrocytes parasitized by Plasmodium falciparum were shown to protect G6PD-deficient populations from severe malaria. Here, we investigated the mechanism of a novel antimalarial series, namely 3-[substituted-benzyl]-menadiones, to understand whether these NADPH-consuming redox-cyclers, which induce oxidative stress, mimic the natural protection of G6PD deficiency. RESULTS: We demonstrated that the key benzoylmenadione metabolite of the lead compound acts as an efficient redox-cycler in NADPH-dependent methaemoglobin reduction, leading to the continuous formation of reactive oxygen species, ferrylhaemoglobin, and subsequent haemichrome precipitation. Structure-activity relationships evidenced that both drug metabolites and haemoglobin catabolites contribute to potentiate drug effects and inhibit parasite development. Disruption of redox homeostasis by the lead benzylmenadione was specifically induced in Plasmodium falciparum parasitized erythrocytes and not in non-infected cells, and was visualized via changes in the glutathione redox potential of living parasite cytosols. Furthermore, the redox-cycler shows additive and synergistic effects in combination with compounds affecting the NADPH flux in vivo. INNOVATION: The lead benzylmenadione 1c is the first example of a novel redox-active agent that mimics the behavior of a falciparum parasite developing inside a G6PD-deficient red blood cell (RBC) giving rise to malaria protection, and it exerts specific additive effects that are inhibitory to parasite development, without harm for non-infected G6PD-sufficient or -deficient RBCs. CONCLUSION: This strategy offers an innovative perspective for the development of future antimalarial drugs for G6PD-sufficient and -deficient populations.


Assuntos
Antimaláricos/química , Antimaláricos/farmacologia , Eritrócitos/efeitos dos fármacos , Deficiência de Glucosefosfato Desidrogenase/sangue , NADP/metabolismo , Estresse Oxidativo , Compostos de Benzil/química , Compostos de Benzil/farmacologia , Linhagem Celular , Eritrócitos/parasitologia , Deficiência de Glucosefosfato Desidrogenase/parasitologia , Glutationa/metabolismo , Humanos , Malária/prevenção & controle , Masculino , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade , Vitamina K 3/química , Vitamina K 3/farmacologia
3.
Biosci Rep ; 33(3)2013 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-23659468

RESUMO

The common severe Z mutation (E342K) of α1-antitrypsin forms intracellular polymers that are associated with liver cirrhosis. The native fold of this protein is well-established and models have been proposed from crystallographic and biophysical data for the stable inter-molecular configuration that terminates the polymerization pathway. Despite these molecular 'snapshots', the details of the transition between monomer and polymer remain only partially understood. We surveyed the RCL (reactive centre loop) of α1-antitrypsin to identify sites important for progression, through intermediate states, to polymer. Mutations at P14P12 and P4, but not P10P8 or P2P1', resulted in a decrease in detectable polymer in a cell model that recapitulates the intracellular polymerization of the Z variant, consistent with polymerization from a near-native conformation. We have developed a FRET (Förster resonance energy transfer)-based assay to monitor polymerization in small sample volumes. An in vitro assessment revealed the position-specific effects on the unimolecular and multimolecular phases of polymerization: the P14P12 region self-inserts early during activation, while the interaction between P6P4 and ß-sheet A presents a kinetic barrier late in the polymerization pathway. Correspondingly, mutations at P6P4, but not P14P12, yield an increase in the overall apparent activation energy of association from ~360 to 550 kJ mol(-1).


Assuntos
alfa 1-Antitripsina/genética , Animais , Células COS , Chlorocebus aethiops , Humanos , Modelos Moleculares , Mutação , Polimerização , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , alfa 1-Antitripsina/química , alfa 1-Antitripsina/metabolismo
4.
Curr Pharm Des ; 19(14): 2512-28, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23116403

RESUMO

The homodimeric flavoenzyme glutathione reductase catalyzes NADPH-dependent glutathione disulfide reduction. This reaction is important for keeping the redox homeostasis in human cells and in the human pathogen Plasmodium falciparum. Different types of NADPH-dependent disulfide reductase inhibitors were designed in various chemical series to evaluate the impact of each inhibition mode on the propagation of the parasites. Against malaria parasites in cultures the most potent and specific effects were observed for redox-active agents acting as subversive substrates for both glutathione reductases of the Plasmodium-infected red blood cells. In their oxidized form, these redox-active compounds are reduced by NADPH-dependent flavoenzyme-catalyzed reactions in the cytosol of infected erythrocytes. In their reduced forms, these compounds can reduce molecular oxygen to reactive oxygen species, or reduce oxidants like methemoglobin, the major nutrient of the parasite, to indigestible hemoglobin. Furthermore, studies on a fluorinated suicide-substrate of the human glutathione reductase indicate that the glutathione reductase-catalyzed bioactivation of 3-benzylnaphthoquinones to the corresponding reduced 3-benzoyl metabolites is essential for the observed antimalarial activity. In conclusion, the antimalarial lead naphthoquinones are suggested to perturb the major redox equilibria of the targeted cells. These effects result in developmental arrest of the parasite and contribute to the removal of the parasitized erythrocytes by macrophages.


Assuntos
Antimaláricos/farmacologia , Desenho de Fármacos , Glutationa Redutase/antagonistas & inibidores , Malária Falciparum/tratamento farmacológico , NADP/metabolismo , Naftoquinonas/farmacologia , Antimaláricos/química , Antimaláricos/uso terapêutico , Catálise , Humanos , Estrutura Molecular , Naftoquinonas/química , Naftoquinonas/uso terapêutico , Oxirredução , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/enzimologia
5.
Org Biomol Chem ; 10(24): 4795-806, 2012 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-22618151

RESUMO

Menadione is the 2-methyl-1,4-naphthoquinone core used to design potent antimalarial redox-cyclers to affect the redox equilibrium of Plasmodium-infected red blood cells. Exploring the reactivity of fluoromethyl-1,4-naphthoquinones, in particular trifluoromenadione, under quasi-physiological conditions in NADPH-dependent glutathione reductase reactions, is discussed in terms of chemical synthesis, electrochemistry, enzyme kinetics, and antimalarial activities. Multitarget-directed drug discovery is an emerging approach to the design of new antimalarial drugs. Combining in one single 1,4-naphthoquinone molecule, the trifluoromenadione core with the alkyl chain at C-3 of the known antimalarial drug atovaquone, revealed a mechanism for CF(3) as a leaving group. The resulting trifluoromethyl derivative 5 showed a potent antimalarial activity per se against malarial parasites in culture.


Assuntos
Antimaláricos/síntese química , Inibidores Enzimáticos/síntese química , Compostos de Flúor/síntese química , Glutationa Redutase/antagonistas & inibidores , Vitamina K 3/síntese química , Antimaláricos/farmacologia , Biocatálise , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Compostos de Flúor/farmacologia , Humanos , Estrutura Molecular , Oxirredução , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/enzimologia , Relação Estrutura-Atividade , Vitamina K 3/farmacologia
6.
Methods Enzymol ; 501: 421-66, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22078544

RESUMO

The serpinopathies result from point mutations in members of the serine protease inhibitor or serpin superfamily. They are characterized by the formation of ordered polymers that are retained within the cell of synthesis. This causes disease by a "toxic gain of function" from the accumulated protein and a "loss of function" as a result of the deficiency of inhibitors that control important proteolytic cascades. The serpinopathies are exemplified by the Z (Glu342Lys) mutant of α1-antitrypsin that results in the retention of ordered polymers within the endoplasmic reticulum of hepatocytes. These polymers form the intracellular inclusions that are associated with neonatal hepatitis, cirrhosis, and hepatocellular carcinoma. A second example results from mutations in the neurone-specific serpin-neuroserpin to form ordered polymers that are retained as inclusions within subcortical neurones as Collins' bodies. These inclusions underlie the autosomal dominant dementia familial encephalopathy with neuroserpin inclusion bodies or FENIB. There are different pathways to polymer formation in vitro but not all form polymers that are relevant in vivo. It is therefore essential that protein-based structural studies are interpreted in the context of human samples and cell and animal models of disease. We describe here the biochemical techniques, monoclonal antibodies, cell biology, animal models, and stem cell technology that are useful to characterize the serpin polymers that form in vivo.


Assuntos
Biofísica/métodos , Epilepsias Mioclônicas/metabolismo , Transtornos Heredodegenerativos do Sistema Nervoso/metabolismo , Processamento de Imagem Assistida por Computador/métodos , Pulmão/metabolismo , Neuropeptídeos/metabolismo , Mutação Puntual , Serpinas/metabolismo , alfa 1-Antitripsina/metabolismo , Animais , Técnicas de Cultura de Células , Linhagem Celular , Epilepsias Mioclônicas/genética , Epilepsias Mioclônicas/patologia , Transtornos Heredodegenerativos do Sistema Nervoso/genética , Transtornos Heredodegenerativos do Sistema Nervoso/patologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Pulmão/patologia , Camundongos , Camundongos Transgênicos , Microscopia Eletrônica , Neuropeptídeos/química , Neuropeptídeos/genética , Neutrófilos/citologia , Neutrófilos/metabolismo , Fragmentos de Peptídeos , Polimerização , Ligação Proteica , Conformação Proteica , Proteólise , Serpinas/química , Serpinas/genética , Transfecção , alfa 1-Antitripsina/química , alfa 1-Antitripsina/genética , Neuroserpina
7.
FEBS J ; 278(20): 3859-67, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21624056

RESUMO

Members of the serine protease inhibitor (serpin) superfamily are found in all branches of life and play an important role in the regulation of enzymes involved in proteolytic cascades. Mutants of the serpins result in a delay in folding, with unstable intermediates being cleared by endoplasmic reticulum-associated degradation. The remaining protein is either fully folded and secreted or retained as ordered polymers within the endoplasmic reticulum of the cell of synthesis. This results in a group of diseases termed the serpinopathies, which are typified by mutations of α(1)-antitrypsin and neuroserpin in association with cirrhosis and the dementia familial encephalopathy with neuroserpin inclusion bodies, respectively. Current evidence strongly suggests that polymers of mutants of α(1)-antitrypsin and neuroserpin are linked by the sequential insertion of the reactive loop of one molecule into ß-sheet A of another. The ordered structure of the polymers within the endoplasmic reticulum stimulates nuclear factor-kappa B by a pathway that is independent of the unfolded protein response. This chronic activation of nuclear factor-kappa B may contribute to the cell toxicity associated with mutations of the serpins. We review the pathobiology of the serpinopathies and the development of novel therapeutic strategies for treating the inclusions that cause disease. These include the use of small molecules to block polymerization, stimulation of autophagy to clear inclusions and stem cell technology to correct the underlying molecular defect.


Assuntos
Doenças Genéticas Inatas/enzimologia , Doenças Genéticas Inatas/patologia , Peptídeo Hidrolases , Serpinas , Animais , Doenças Genéticas Inatas/genética , Humanos , Mutação , Serpinas/genética , Serpinas/metabolismo
8.
Methods ; 53(3): 255-66, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21115126

RESUMO

Neuroserpin is a member of the serine protease inhibitor or serpin superfamily of proteins. It is secreted by neurones and plays an important role in the regulation of tissue plasminogen activator at the synapse. Point mutations in the neuroserpin gene cause the autosomal dominant dementia familial encephalopathy with neuroserpin inclusion bodies or FENIB. This is one of a group of disorders caused by mutations in the serpins that are collectively known as the serpinopathies. Others include α(1)-antitrypsin deficiency and deficiency of C1 inhibitor, antithrombin and α(1)-antichymotrypsin. The serpinopathies are characterised by delays in protein folding and the retention of ordered polymers of the mutant serpin within the cell of synthesis. The clinical phenotype results from either a toxic gain of function from the inclusions or a loss of function, as there is insufficient protease inhibitor to regulate important proteolytic cascades. We describe here the methods required to characterise the polymerisation of neuroserpin and draw parallels with the polymerisation of α(1)-antitrypsin. It is important to recognise that the conditions in which experiments are performed will have a major effect on the findings. For example, incubation of monomeric serpins with guanidine or urea will produce polymers that are not found in vivo. The characterisation of the pathological polymers requires heating of the folded protein or alternatively the assessment of ordered polymers from cell and animal models of disease or from the tissues of humans who carry the mutation.


Assuntos
Deficiências na Proteostase/patologia , Serpinas/química , Animais , Animais Geneticamente Modificados , Clonagem Molecular/métodos , Modelos Animais de Doenças , Drosophila melanogaster/genética , Epilepsias Mioclônicas/patologia , Transtornos Heredodegenerativos do Sistema Nervoso/patologia , Humanos , Soros Imunes , Corpos de Inclusão/patologia , Espectrometria de Massas/métodos , Mutação de Sentido Incorreto , Multimerização Proteica , Redobramento de Proteína , Deficiências na Proteostase/genética , Serpinas/genética , Serpinas/metabolismo
9.
Hepatology ; 52(3): 1078-88, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20583215

RESUMO

UNLABELLED: Alpha(1)-antitrypsin is the most abundant circulating protease inhibitor. The severe Z deficiency allele (Glu342Lys) causes the protein to undergo a conformational transition and form ordered polymers that are retained within hepatocytes. This causes neonatal hepatitis, cirrhosis, and hepatocellular carcinoma. We have developed a conformation-specific monoclonal antibody (2C1) that recognizes the pathological polymers formed by alpha(1)-antitrypsin. This antibody was used to characterize the Z variant and a novel shutter domain mutant (His334Asp; alpha(1)-antitrypsin King's) identified in a 6-week-old boy who presented with prolonged jaundice. His334Asp alpha(1)-antitrypsin rapidly forms polymers that accumulate within the endoplasmic reticulum and show delayed secretion when compared to the wild-type M alpha(1)-antitrypsin. The 2C1 antibody recognizes polymers formed by Z and His334Asp alpha(1)-antitrypsin despite the mutations directing their effects on different parts of the protein. This antibody also recognized polymers formed by the Siiyama (Ser53Phe) and Brescia (Gly225Arg) mutants, which also mediate their effects on the shutter region of alpha(1)-antitrypsin. CONCLUSION: Z and shutter domain mutants of alpha(1)-antitrypsin form polymers with a shared epitope and so are likely to have a similar structure.


Assuntos
Anticorpos Monoclonais/imunologia , Hepatopatias/metabolismo , Polímeros/metabolismo , Deficiência de alfa 1-Antitripsina/metabolismo , alfa 1-Antitripsina/imunologia , alfa 1-Antitripsina/metabolismo , Especificidade de Anticorpos , Retículo Endoplasmático/metabolismo , Epitopos/imunologia , Humanos , Lactente , Recém-Nascido , Icterícia Neonatal/metabolismo , Fígado/metabolismo , Masculino , Mutação/genética , Estrutura Terciária de Proteína , alfa 1-Antitripsina/genética
10.
Protein Sci ; 19(2): 220-8, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19953505

RESUMO

Neuroserpin is a member of the serpin superfamily. Point mutations in the neuroserpin gene underlie the autosomal dominant dementia, familial encephalopathy with neuroserpin inclusion bodies. This is characterized by the retention of ordered polymers of neuroserpin within the endoplasmic reticulum of neurons. pH has been shown to affect the propensity of several serpins to form polymers. In particular, low pH favors the formation of polymers of both alpha(1)-antitrypsin and antithrombin. We report here opposite effects in neuroserpin, with a striking resistance to polymer formation at acidic pH. Mutation of specific histidine residues showed that this effect is not attributable to the shutter domain histidine as would be predicted by analogy with other serpins. Indeed, mutation of the shutter domain His338 decreased neuroserpin stability but had no effect on the pH dependence of polymerization when compared with the wild-type protein. In contrast, mutation of His119 or His138 reduced the polymerization of neuroserpin at both acidic and neutral pH. These residues are at the lower pole of neuroserpin and provide a novel mechanism to control the opening of beta-sheet A and hence polymerization. This mechanism is likely to have evolved to protect neuroserpin from the acidic environment of the secretory granules.


Assuntos
Neuropeptídeos/química , Neuropeptídeos/metabolismo , Serpinas/química , Serpinas/metabolismo , Histidina/genética , Histidina/metabolismo , Concentração de Íons de Hidrogênio , Modelos Moleculares , Mutação , Neuropeptídeos/genética , Ligação Proteica , Estabilidade Proteica , Estrutura Secundária de Proteína , Serpinas/genética , Neuroserpina
11.
Biophys J ; 97(8): 2306-15, 2009 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-19843463

RESUMO

Neuroserpin is a member of the serine proteinase inhibitor superfamily. It can undergo a conformational transition to form polymers that are associated with the dementia familial encephalopathy with neuroserpin inclusion bodies and the wild-type protein can inhibit the toxicity of amyloid-beta peptides in Alzheimer's disease. We have used a single molecule fluorescence method, two color coincidence detection, to determine the rate-limiting steps of the early stages of the polymerization of fluorophore-labeled neuroserpin and have assessed how this process is altered in the presence of A beta(1-40.) Our data show that neuroserpin polymerization proceeds first by the unimolecular formation of an active monomer, followed by competing processes of both polymerization and formation of a latent monomer from the activated species. These data are not in keeping with the recently proposed domain swap model of polymer formation in which the latent species and activated monomer are likely to be formed by competing pathways directly from the unactivated monomeric serpin. Moreover, the A beta(1-40) peptide forms a weak complex with neuroserpin (dissociation constant of 10 +/- 5 nM) that increases the amount of active monomer thereby increasing the rate of polymerization. The A beta(1-40) is displaced from the complex so that it acts as a catalyst and is not incorporated into neuroserpin polymers.


Assuntos
Peptídeos beta-Amiloides/química , Neuropeptídeos/química , Fragmentos de Peptídeos/química , Multimerização Proteica , Serpinas/química , AMP Cíclico/análogos & derivados , Eletroforese em Gel de Poliacrilamida , Escherichia coli , Fluorescência , Cinética , Modelos Químicos , Mutação , Neuropeptídeos/genética , Serpinas/genética , Neuroserpina
12.
Clin Sci (Lond) ; 116(12): 837-50, 2009 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-19426146

RESUMO

alpha1-Antitrypsin is the prototypical member of the serine proteinase inhibitor or serpin superfamily of proteins. The family includes alpha1-antichymotrypsin, C1 inhibitor, antithrombin and neuroserpin, which are all linked by a common molecular structure and the same suicidal mechanism for inhibiting their target enzymes. Point mutations result in an aberrant conformational transition and the formation of polymers that are retained within the cell of synthesis. The intracellular accumulation of polymers of mutant alpha1-antitrypsin and neuroserpin results in a toxic gain-of-function phenotype associated with cirrhosis and dementia respectively. The lack of important inhibitors results in overactivity of proteolytic cascades and diseases such as COPD (chronic obstructive pulmonary disease) (alpha1-antitrypsin and alpha1-antichymotrypsin), thrombosis (antithrombin) and angio-oedema (C1 inhibitor). We have grouped these conditions that share the same underlying disease mechanism together as the serpinopathies. In the present review, the molecular and pathophysiological basis of alpha1-antitrypsin deficiency and other serpinopathies are considered, and we show how understanding this unusual mechanism of disease has resulted in the development of novel therapeutic strategies.


Assuntos
Doença Pulmonar Obstrutiva Crônica/etiologia , Inibidores de Serina Proteinase/uso terapêutico , Serpinas/deficiência , Deficiência de alfa 1-Antitripsina/genética , Genótipo , Humanos , Fenótipo , Mutação Puntual/genética , Doença Pulmonar Obstrutiva Crônica/terapia , Deficiência de alfa 1-Antitripsina/terapia
13.
Prion ; 1(1): 15-20, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-19164889

RESUMO

The serpins are the largest superfamily of protease inhibitors. They are found in almost all branches of life including viruses, prokaryotes and eukaryotes. They inhibit their target protease by a unique mechanism that involves a large conformational transition and the translocation of the enzyme from the upper to the lower pole of the protein. This complex mechanism, and the involvement of serpins in important biological regulatory processes, makes them prone to mutation-related diseases. For example the polymerization of mutant alpha(1)-antitrypsin leads to the accumulation of ordered polymers within the endoplasmic reticulum of hepatocytes in association with cirrhosis. An identical process in the neuron specific serpin, neuroserpin, results in the accumulation of polymers in neurons and the dementia FENIB. In both cases there is a clear correlation between the molecular instability, the rate of polymer formation and the severity of disease. A similar process underlies the hepatic retention and plasma deficiency of antithrombin, C1 inhibitor, alpha(1)-antichymotrypsin and heparin co-factor II. The common mechanism of polymerization has allowed us to group these conditions together as a novel class of disease, the serpinopathies.


Assuntos
Doenças Genéticas Inatas/metabolismo , Inibidores de Proteases/metabolismo , Serpinas/metabolismo , Animais , Demência/genética , Demência/metabolismo , Células Eucarióticas/química , Células Eucarióticas/metabolismo , Doenças Genéticas Inatas/genética , Humanos , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Mutação , Especificidade de Órgãos , Peptídeo Hidrolases/química , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Células Procarióticas/química , Células Procarióticas/metabolismo , Inibidores de Proteases/química , Conformação Proteica , Serpinas/química , Serpinas/genética , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo , Vírus/química , Vírus/genética , Vírus/metabolismo
14.
J Biol Chem ; 281(36): 26437-43, 2006 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-16835244

RESUMO

Necrotic is a member of the serine protease inhibitor or serpin superfamily. It is a potent inhibitor of elastase and chymotrypsin type proteases and is responsible for regulating the anti-fungal response in Drosophila melanogaster. Necrotic contains three basic lysine residues within the D-helix that are homologous to those found in the heparin-binding domain of antithrombin and heparin co-factor II. We show here that substitution of all three lysine residues for glutamines caused cellular necrosis and premature death in Drosophila in keeping with a loss of function phenotype. The lysine to glutamine substitutions had no effect on the overall structure of recombinant Necrotic protein but abolished the formation of stable complexes with target proteases. Individual substitutions with either glutamine or alanine demonstrated that lysine 68 was the most critical residue for inhibitory activity. Despite the homology to other serpins, Necrotic did not bind, nor was it activated by sulfated glycans. These data demonstrate a critical role for basic residues within the D-helix (and lysine 68 in particular) in the inhibitory mechanism of the serpin Necrotic.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster/metabolismo , Lisina/metabolismo , Estrutura Secundária de Proteína , Inibidores de Serina Proteinase , Serpinas , Animais , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Heparina/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Inibidores de Serina Proteinase/química , Inibidores de Serina Proteinase/genética , Inibidores de Serina Proteinase/metabolismo , Serpinas/química , Serpinas/genética , Serpinas/metabolismo
15.
FEBS J ; 273(11): 2540-52, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16704419

RESUMO

Mutations in neuroserpin and alpha1-antitrypsin cause these proteins to form ordered polymers that are retained within the endoplasmic reticulum of neurones and hepatocytes, respectively. The resulting inclusions underlie the dementia familial encephalopathy with neuroserpin inclusion bodies (FENIB) and Z alpha1-antitrypsin-associated cirrhosis. Polymers form by a sequential linkage between the reactive centre loop of one molecule and beta-sheet A of another, and strategies that block polymer formation are likely to be successful in treating the associated disease. We show here that glycerol, the sugar alcohol erythritol, the disaccharide trehalose and its breakdown product glucose reduce the rate of polymerization of wild-type neuroserpin and the Ser49Pro mutant that causes dementia. They also attenuate the polymerization of the Z variant of alpha1-antitrypsin. The effect on polymerization was apparent even when these agents had been removed from the buffer. None of these agents had any detectable effect on the structure or inhibitory activity of neuroserpin or alpha1-antitrypsin. These data demonstrate that sugar and alcohol molecules can reduce the polymerization of serpin mutants that cause disease, possibly by binding to and stabilizing beta-sheet A.


Assuntos
Carboidratos/uso terapêutico , Demência/tratamento farmacológico , Etanol/uso terapêutico , Cirrose Hepática/tratamento farmacológico , Serpinas/metabolismo , Dicroísmo Circular , Eritritol/farmacologia , Glucose/farmacologia , Glicerol/farmacologia , Modelos Moleculares , Neuropeptídeos/efeitos dos fármacos , Neuropeptídeos/metabolismo , Conformação Proteica , Estrutura Secundária de Proteína , Proteínas Recombinantes/efeitos dos fármacos , Proteínas Recombinantes/metabolismo , Serpinas/efeitos dos fármacos , Trealose/farmacologia , alfa 1-Antitripsina/química , alfa 1-Antitripsina/efeitos dos fármacos , Neuroserpina
16.
Insect Biochem Mol Biol ; 36(1): 37-46, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16360948

RESUMO

The Drosophila Necrotic protein is a serine proteinase inhibitor, which regulates the Toll-mediated innate immune response. Necrotic specifically inhibits an extracellular serine proteinase cascade leading to activation of the Toll ligand, Spätzle. Necrotic carries a polyglutamine extension amino-terminal to the core serpin structure. We show here that cleavage of this N-terminal extension occurs following immune challenge. This modification is blocked in PGRP-SA(semmelweiss) mutants after Gram-positive bacterial challenge and in persephone mutants after fungal or Gram-positive bacterial challenge, indicating that activation of either of the Toll pathway upstream branches induces N-terminal cleavage of the serpin. The absolute requirement of persephone gene product for this cleavage indicates that Gram-positive bacteria activate a redundant set of proteinases upstream of Toll. Both full-length Necrotic and the core serpin are active inhibitors of a range of serine proteinases: the highest affinity being for cathepsin G and elastases. We found a 13-fold increase in the specificity of the core serpin over that of full-length Necrotic for one of the tested proteinases (porcine pancreatic elastase). This finding indicates that cleavage of the Necrotic amino-terminal extension might modulate Toll activation following the initial immune response.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/imunologia , Drosophila melanogaster/metabolismo , Serpinas/metabolismo , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/imunologia , Regulação da Expressão Gênica , Conformação Proteica , Serpinas/genética , Serpinas/imunologia , Transdução de Sinais
17.
J Biol Chem ; 280(14): 13735-41, 2005 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-15664988

RESUMO

The serpinopathies result from conformational transitions in members of the serine proteinase inhibitor superfamily with aberrant tissue deposition or loss of function. They are typified by mutants of neuroserpin that are retained within the endoplasmic reticulum of neurons as ordered polymers in association with dementia. We show here that the S49P mutant of neuroserpin that causes the dementia familial encephalopathy with neuroserpin inclusion bodies (FENIB) forms a latent species in vitro and in vivo in addition to the formation of polymers. Latent neuroserpin is thermostable and inactive as a proteinase inhibitor, but activity can be restored by refolding. Strikingly, latent S49P neuroserpin is unlike any other latent serine proteinase inhibitor (serpin) in that it spontaneously forms polymers under physiological conditions. These data provide an alternative method for the inactivation of mutant neuroserpin as a proteinase inhibitor in FENIB and demonstrate a second pathway for the formation of intracellular polymers in association with disease.


Assuntos
Biopolímeros/química , Demência/genética , Demência/patologia , Corpos de Inclusão/química , Neuropeptídeos , Mutação Puntual , Serpinas , Adulto , Animais , Biopolímeros/metabolismo , Células COS , Chlorocebus aethiops , Ácido Cítrico/química , Demência/metabolismo , Humanos , Pessoa de Meia-Idade , Modelos Moleculares , Neurônios/citologia , Neurônios/metabolismo , Neuropeptídeos/química , Neuropeptídeos/genética , Neuropeptídeos/isolamento & purificação , Neuropeptídeos/metabolismo , Conformação Proteica , Dobramento de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Serpinas/química , Serpinas/genética , Serpinas/isolamento & purificação , Serpinas/metabolismo , Temperatura , Neuroserpina
18.
Front Biosci ; 9: 2873-91, 2004 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-15353322

RESUMO

We review here the molecular mechanisms that underlie alpha1-antitrypsin deficiency and show how an understanding of this mechanism has allowed us to explain the deficiency of other members of the serine proteinase inhibitor or serpin superfamily. These include the deficiency of antithrombin, C1-inhibitor and alpha1-antichymotrypsin in association with thrombosis, angio-oedema and emphysema respectively. Moreover the accumulation of mutant neuroserpin within neurones causes the novel dementia familial encephalopathy with neuroserpin inclusion bodies (FENIB). We have grouped these conditions together as the serpinopathies as recognition of their common pathophysiology provides a platform to develop strategies to treat the associated clinical syndromes.


Assuntos
Demência/patologia , Deficiência de alfa 1-Antitripsina/patologia , alfa 1-Antitripsina/química , Alelos , Animais , Antitrombinas/química , Antitrombinas/metabolismo , Cristalografia por Raios X , Modelos Animais de Doenças , Enfisema/patologia , Humanos , Fígado/metabolismo , Pneumopatias/patologia , Mutação , Neuropeptídeos/química , Inibidor 1 de Ativador de Plasminogênio/química , Inibidor 1 de Ativador de Plasminogênio/genética , Inibidor 2 de Ativador de Plasminogênio/química , Inibidor 2 de Ativador de Plasminogênio/genética , Polímeros/química , Estrutura Terciária de Proteína , Serpinas/química , Trombose/patologia , alfa 1-Antitripsina/genética , Neuroserpina
19.
Eur J Biochem ; 271(16): 3360-7, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15291813

RESUMO

The dementia familial encephalopathy with neuroserpin inclusion bodies (FENIB) is caused by point mutations in the neuroserpin gene. We have shown a correlation between the predicted effect of the mutation and the number of intracerebral inclusions, and an inverse relationship with the age of onset of disease. Our previous work has shown that the intraneuronal inclusions in FENIB result from the sequential interaction between the reactive centre loop of one neuroserpin molecule with beta-sheet A of the next. We show here that neuroserpin Portland (Ser52Arg), which causes a severe form of FENIB, also forms loop-sheet polymers but at a faster rate, in keeping with the more severe clinical phenotype. The Portland mutant has a normal unfolding transition in urea and a normal melting temperature but is inactive as a proteinase inhibitor. This results in part from the reactive loop being in a less accessible conformation to bind to the target enzyme, tissue plasminogen activator. These results, with those of the CD analysis, are in keeping with the reactive centre loop of neuroserpin Portland being partially inserted into beta-sheet A to adopt a conformation similar to an intermediate on the polymerization pathway. Our data provide an explanation for the number of inclusions and the severity of dementia in FENIB associated with neuroserpin Portland. Moreover the inactivity of the mutant may result in uncontrolled activity of tissue plasminogen activator, and so explain the epileptic seizures seen in individuals with more severe forms of the disease.


Assuntos
Substituição de Aminoácidos/genética , Arginina/genética , Biopolímeros/química , Biopolímeros/metabolismo , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Serina/genética , Serpinas/genética , Serpinas/metabolismo , Arginina/metabolismo , Biopolímeros/genética , Catálise , Dicroísmo Circular , Demência/genética , Demência/metabolismo , Epilepsia/genética , Epilepsia/metabolismo , Humanos , Hidrólise , Corpos de Inclusão/metabolismo , Modelos Moleculares , Neuropeptídeos/química , Neuropeptídeos/classificação , Desnaturação Proteica/efeitos dos fármacos , Dobramento de Proteína , Estrutura Terciária de Proteína , Serpinas/química , Serpinas/classificação , Espectrometria de Fluorescência , Temperatura , Ativador de Plasminogênio Tecidual/antagonistas & inibidores , Ativador de Plasminogênio Tecidual/metabolismo , Ureia/farmacologia , Neuroserpina
20.
Am J Respir Cell Mol Biol ; 31(2): 133-9, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15016619

RESUMO

The Z variant of alpha1-antitrypsin (Z-AT) is present in 4% of Northern Europeans and is associated with liver cirrhosis and emphysema. Polymers accumulate within the hepatocyte and the subsequent plasma deficiency of AT renders the lungs susceptible to proteolysis and early onset emphysema. We have previously demonstrated that the Phe-Leu-Glu-Ala-Ile-Gly (6 mer) peptide specifically binds to Z-AT and inhibits polymerization. Here we present the first detailed biochemical study of the purified Z-AT-6 mer binary complex. Biochemical studies indicated that this complex was inactive as a proteinase inhibitor and the peptide annealed to beta-sheet A of Z-AT. Removal of the N-acetyl terminus of the 6 mer peptide did not affect the peptide's ability to prevent polymer formation. However, the nonacetylated 6 mer-Z-AT complex dissociated at a rate 2.75 x faster than the acetylated 6 mer-Z-AT complex to yield an active inhibitor; Koff 5.5 +/- 1.07 versus 2.0 +/- 0.25 10(6) s(-1), respectively. These biochemical data indicate a potential therapeutic approach whereby polymerization is prevented in the liver, with the gradual release of the peptide from the binary complex restoring proteinase inhibitory function within the tissues. Thus, it raises the novel prospect of ameliorating both the cirrhosis and the emphysema associated with Z-AT.


Assuntos
Biopolímeros , Enfisema/induzido quimicamente , alfa 1-Antitripsina/fisiologia , Sequência de Aminoácidos , Dicroísmo Circular , Eletroforese em Gel de Poliacrilamida , Humanos , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...