Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioorg Chem ; 136: 106528, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37054528

RESUMO

Intense synthetic efforts have been directed towards the development of noncalcemic analogs of 1,25-dihydroxyvitamin D3. We describe here the structural analysis and biological evaluation of two derivatives of 1,25-dihydroxyvitamin D3 with modifications limited to the replacement of the 25-hydroxyl group by a 25-amino or 25-nitro groups. Both compounds are agonists of the vitamin D receptor. They mediate biological effects similar to 1,25-dihydroxyvitamin D3, the 25-amino derivative being the most potent one while being less calcemic than 1,25-dihydroxyvitamin D3. The in vivo properties of the compounds make them of potential therapeutic value.


Assuntos
Receptores de Calcitriol , Vitamina D , Vitamina D/farmacologia , Calcitriol/química , Calcitriol/farmacologia
2.
Int J Mol Sci ; 23(15)2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35955580

RESUMO

The Vitamin D receptor (VDR) plays a key role in calcium homeostasis, as well as in cell proliferation and differentiation. Among the large number of VDR ligands that have been developed, we have previously shown that BXL-62 and Gemini-72, two C-20-modified vitamin D analogs are highly potent VDR agonists. In this study, we show that both VDR ligands restore the transcriptional activities of VDR variants unresponsive to the natural ligand and identified in patients with rickets. The elucidated mechanisms of action underlying the activities of these C-20-modified analogs emphasize the mutual adaptation of the ligand and the VDR ligand-binding pocket.


Assuntos
Receptores de Calcitriol , Raquitismo , Humanos , Ligantes , Ligação Proteica , Receptores de Calcitriol/agonistas , Vitamina D
3.
Angew Chem Int Ed Engl ; 60(5): 2296-2303, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-32935897

RESUMO

Efficient optimization of a peptide lead into a drug candidate frequently needs further transformation to augment properties such as bioavailability. Among the different options, foldamers, which are sequence-based oligomers with precise folded conformation, have emerged as a promising technology. We introduce oligourea foldamers to reduce the peptide character of inhibitors of protein-protein interactions (PPI). However, the precise design of such mimics is currently limited by the lack of structural information on how these foldamers adapt to protein surfaces. We report a collection of X-ray structures of peptide-oligourea hybrids in complex with ubiquitin ligase MDM2 and vitamin D receptor and show how such hybrid oligomers can be designed to bind with high affinity to protein targets. This work should enable the generation of more effective foldamer-based disruptors of PPIs in the context of peptide lead optimization.


Assuntos
Conformação Proteica em alfa-Hélice/fisiologia , Ureia/química , Humanos , Modelos Moleculares , Estrutura Molecular
4.
Nat Commun ; 11(1): 6249, 2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-33288743

RESUMO

The bioactive vitamin D3, 1α,25(OH)2D3, plays a central role in calcium homeostasis by controlling the activity of the vitamin D receptor (VDR) in various tissues. Hypercalcemia secondary to high circulating levels of vitamin D3 leads to hypercalciuria, nephrocalcinosis and renal dysfunctions. Current therapeutic strategies aim at limiting calcium intake, absorption and resorption, or 1α,25(OH)2D3 synthesis, but are poorly efficient. In this study, we identify WBP4 as a new VDR interactant, and demonstrate that it controls VDR subcellular localization. Moreover, we show that the vitamin D analogue ZK168281 enhances the interaction between VDR and WBP4 in the cytosol, and normalizes the expression of VDR target genes and serum calcium levels in 1α,25(OH)2D3-intoxicated mice. As ZK168281 also blunts 1α,25(OH)2D3-induced VDR signaling in fibroblasts of a patient with impaired vitamin D degradation, this VDR antagonist represents a promising therapeutic option for 1α,25(OH)2D3-induced hypercalcemia.


Assuntos
Cálcio/metabolismo , Hipercalcemia/metabolismo , Receptores de Calcitriol/metabolismo , Vitamina D/farmacologia , Animais , Calcitriol/análogos & derivados , Calcitriol/farmacologia , Linhagem Celular , Linhagem Celular Tumoral , Citosol/metabolismo , Expressão Gênica/efeitos dos fármacos , Células HeLa , Humanos , Hipercalcemia/genética , Hipercalcemia/prevenção & controle , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ligação Proteica , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ratos , Receptores de Calcitriol/genética , Vitamina D/análogos & derivados
5.
Nucleic Acids Res ; 48(19): 11199-11213, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-32990725

RESUMO

The MED1 subunit of the Mediator complex is an essential coactivator of nuclear receptor-mediated transcriptional activation. While structural requirements for ligand-dependent binding of classical coactivator motifs of MED1 to numerous nuclear receptor ligand-binding domains have been fully elucidated, the recognition of the full-length or truncated coactivator by full nuclear receptor complexes remain unknown. Here we present structural details of the interaction between a large part of MED1 comprising its structured N-terminal and the flexible receptor-interacting domains and the mutual heterodimer of the vitamin D receptor (VDR) and the retinoid X receptor (RXR) bound to their cognate DNA response element. Using a combination of structural and biophysical methods we show that the ligand-dependent interaction between VDR and the second coactivator motif of MED1 is crucial for complex formation and we identify additional, previously unseen, interaction details. In particular, we identified RXR regions involved in the interaction with the structured N-terminal domain of MED1, as well as VDR regions outside the classical coactivator binding cleft affected by coactivator recruitment. These findings highlight important roles of each receptor within the heterodimer in selective recognition of MED1 and contribute to our understanding of the nuclear receptor-coregulator complexes.


Assuntos
DNA/metabolismo , Subunidade 1 do Complexo Mediador , Receptores de Calcitriol , Receptor X Retinoide alfa , Humanos , Ligantes , Subunidade 1 do Complexo Mediador/química , Subunidade 1 do Complexo Mediador/metabolismo , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , Receptores de Calcitriol/química , Receptores de Calcitriol/metabolismo , Receptor X Retinoide alfa/química , Receptor X Retinoide alfa/metabolismo
6.
J Med Chem ; 63(17): 9457-9463, 2020 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-32787090

RESUMO

Vitamin D receptor (VDR) antagonists prevent the VDR activation function helix 12 from folding into its active conformation, thus affecting coactivator recruitment and antagonizing the transcriptional regulation induced by 1α,25-dihydroxyvitamin D3. Here, we report the crystal structure of the zebrafish VDR ligand-binding domain in complex with the ZK168281 antagonist, revealing that the ligand prevents optimal folding of the C-terminal region of VDR. This interference was confirmed by hydrogen-deuterium exchange mass spectrometry (HDX-MS) in solution.


Assuntos
Calcitriol/análogos & derivados , Receptores de Calcitriol/antagonistas & inibidores , Receptores de Calcitriol/metabolismo , Animais , Calcitriol/metabolismo , Calcitriol/farmacologia , Linhagem Celular , Ligantes , Modelos Moleculares , Ligação Proteica , Domínios Proteicos , Ratos , Receptores de Calcitriol/química , Peixe-Zebra
7.
Commun Biol ; 2: 431, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31799433

RESUMO

Liver X receptors (LXRs) are attractive drug targets for cardiovascular disease treatment due to their role in regulating cholesterol homeostasis and immunity. The anti-atherogenic properties of LXRs have prompted development of synthetic ligands, but these cause major adverse effects-such as increased lipogenesis-which are challenging to dissect from their beneficial activities. Here we show that LXR compounds displaying diverse functional responses in animal models induce distinct receptor conformations. Combination of hydrogen/deuterium exchange mass spectrometry and multivariate analysis allowed identification of LXR regions differentially correlating with anti-atherogenic and lipogenic activities of ligands. We show that lipogenic compounds stabilize active states of LXRα and LXRß while the anti-atherogenic expression of the cholesterol transporter ABCA1 is associated with the ligand-induced stabilization of LXRα helix 3. Our data indicates that avoiding ligand interaction with the activation helix 12 while engaging helix 3 may provide directions for development of ligands with improved therapeutic profiles.


Assuntos
Receptores X do Fígado/química , Receptores X do Fígado/metabolismo , Modelos Moleculares , Conformação Proteica , Transportador 1 de Cassete de Ligação de ATP/química , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Descoberta de Drogas , Humanos , Ligantes , Estrutura Molecular , Correpressor 1 de Receptor Nuclear/química , Correpressor 1 de Receptor Nuclear/metabolismo , Ligação Proteica , Relação Estrutura-Atividade
8.
Sci Rep ; 7(1): 10193, 2017 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-28860545

RESUMO

1α,20S-Dihydroxyvitamin D3 [1,20S(OH)2D3], a natural and bioactive vitamin D3 metabolite, was chemically synthesized for the first time. X-ray crystallography analysis of intermediate 15 confirmed its 1α-OH configuration. 1,20S(OH)2D3 interacts with the vitamin D receptor (VDR), with similar potency to its native ligand, 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3] as illustrated by its ability to stimulate translocation of the VDR to the nucleus, stimulate VDRE-reporter activity, regulate VDR downstream genes (VDR, CYP24A1, TRPV6 and CYP27B1), and inhibit the production of inflammatory markers (IFNγ and IL1ß). However, their co-crystal structures revealed differential molecular interactions of the 20S-OH moiety and the 25-OH moiety to the VDR, which may explain some differences in their biological activities. Furthermore, this study provides a synthetic route for the synthesis of 1,20S(OH)2D3 using the intermediate 1α,3ß-diacetoxypregn-5-en-20-one (3), and provides a molecular and biological basis for the development of 1,20S(OH)2D3 and its analogs as potential therapeutic agents.


Assuntos
Calcifediol/análogos & derivados , Calcifediol/farmacologia , Receptores de Calcitriol/química , Receptores de Calcitriol/metabolismo , Animais , Células CACO-2 , Calcifediol/química , Linhagem Celular , Núcleo Celular/metabolismo , Cristalografia por Raios X , Humanos , Células Jurkat , Modelos Moleculares , Transporte Proteico/efeitos dos fármacos
9.
Eur J Med Chem ; 134: 86-96, 2017 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-28399453

RESUMO

Synthetic analogs of 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) have been developed with the goal of improving the biological profile of the natural hormone for therapeutic applications. Derivatives of 1,25(OH)2D3 with the oxolane moiety branched in the side chain at carbon C20, act as Vitamin D nuclear Receptor (VDR) superagonists being several orders of magnitude more active than the natural ligand. Here, we describe the synthesis and biological evaluation of three diastereoisomers of (1S, 3R)-Dihydroxy-(20S)-[(2″-hydroxy-2″-propyl)-tetrahydrofuryl]-22,23,24,25,26,27-hexanor-1α-hydroxyvitamin D3, with different stereochemistry at positions C2 and C5 of the oxolane ring branched at carbon C22 (1, C2RC5S; 2, C2SC5R; 3, C2SC5S). These compounds act as weak VDR agonist in transcriptional assays with compound 3 being the most active. X-ray crystallographic analysis of the VDR ligand-binding domain accommodating the three compounds indicates that the oxolane group branched at carbon C22 is not constrained as in case of compound with oxolane group branched at C20 leading to the loss of interactions of the triene group and increased flexibility of the C/D-rings and of the side chain.


Assuntos
Calcitriol/análogos & derivados , Calcitriol/farmacologia , Receptores de Calcitriol/agonistas , Animais , Células COS , Chlorocebus aethiops , Cristalografia por Raios X , Células HEK293 , Humanos , Modelos Moleculares , Receptores de Calcitriol/química , Receptores de Calcitriol/metabolismo , Estereoisomerismo , Relação Estrutura-Atividade , Peixe-Zebra
10.
J Steroid Biochem Mol Biol ; 173: 69-74, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-27650654

RESUMO

Gemini analogs of calcitriol, characterized by the extension of the C21-methyl group of calcitriol with a second chain, act as agonists of the vitamin D receptor (VDR). This second side chain of gemini is accommodated in a new cavity inside the VDR created by the structural rearrangement of the protein core. The resulting conformational change preserves the active state of the receptor and bestows gemini compounds with biological activities that exceed those of calcitriol. Of particular interest are gemini's anti-cancer properties, and in this study we demonstrate anti-proliferative and tumor-reducing abilities of BXL0124 and BXL0097, differing only by the presence or absence, respectively, of the methylene group on the A ring. BXL0124 acts as a more potent VDR agonist than its 19-nor counterpart by activating VDR-mediated transcription at lower concentrations. In a similar manner, BXL0124 is more active than BXL0097 in growth inhibition of breast cancer cells and reduction of tumor volume. Structural comparisons of BXL0097 and BXL0124, as their VDR complexes, explain the elevated activity of the latter.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Calcitriol/análogos & derivados , Vitaminas/química , Vitaminas/uso terapêutico , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Calcitriol/química , Calcitriol/farmacologia , Calcitriol/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Feminino , Células HEK293 , Humanos , Células MCF-7 , Camundongos SCID , Simulação de Acoplamento Molecular , Receptores de Calcitriol/metabolismo , Ativação Transcricional/efeitos dos fármacos , Vitaminas/farmacologia
11.
Vitam Horm ; 100: 83-116, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26827949

RESUMO

The vitamin D nuclear receptor (VDR) and its natural ligand, 1α,25-dihydroxyvitamin D3 hormone (1,25(OH)2D3, or calcitriol), classically regulate mineral homeostasis and metabolism but also much broader range of biological functions, such as cell growth, differentiation, antiproliferation, apoptosis, adaptive/innate immune responses. Being widely expressed in various tissues, VDR represents an important therapeutic target in the treatment of diverse disorders. Since ligand binding is a key step in VDR-mediated signaling, numerous 1,25(OH)2D3 analogs have been synthesized in order to selectively modulate the receptor activity. Most of the synthetic analogs have been developed by modification of a parental compound and some of them mimic 1,25(OH)2D3 scaffold without being structurally related to it. The ability of ligands that have different size and conformation to bind to VDR and to demonstrate biological effects is intriguing, and therefore, ligand-binding properties of the receptor have been extensively investigated using a variety of biochemical, biophysical, and computational methods. In this chapter, we describe different aspects of the structure-function relationship of VDR in complex with natural and synthetic ligands coming from structural analysis. With the emphasis on the binding modes of the most promising compounds, such as secosteroidal agonists and 1,25(OH)2D3 mimics, we also highlight the action of VDR antagonists and the evidence for the existence of an alternative ligand-binding site within the receptor. Additionally, we describe the crystal structures of VDR mutants associated with hereditary vitamin D-resistant rickets that display impaired ligand-binding function.


Assuntos
Calcitriol/agonistas , Calcitriol/antagonistas & inibidores , Receptores de Calcitriol/agonistas , Receptores de Calcitriol/metabolismo , Calcitriol/química , Humanos , Ligantes , Modelos Moleculares , Ligação Proteica , Conformação Proteica
12.
Chem Sci ; 7(2): 1033-1037, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28808527

RESUMO

The vitamin D nuclear receptor (VDR) is a potential target for cancer therapy. It is expressed in many tumors and its ligand shows anticancer actions. To combine these properties with the application of boron neutron capture therapy (BNCT), we design and synthesize a potent VDR agonist based on the skeleton of the hormone 1α,25-dihydroxyvitamin D3 (1,25D) and an o-carborane (dicarba-o-closo-1,2-dodecaborane) at the end of its side chain. The present ligand is the first secosteroidal analog with the carborane unit that efficiently binds to VDR and functions as an agonist with 1,25D-like potency in transcriptional assay on vitamin D target genes. Moreover it exhibits similar antiproliferative and pro-differentiating activities but is significantly less hypercalcemic than 1,25D. The crystal structure of its complex with VDR ligand binding domain reveals its binding mechanism involving boron-mediated dihydrogen bonds that mimic vitamin D hydroxyl interactions. In addition to the therapeutic interest, this study establishes the basis for the design of new unconventional vitamin D analogs containing carborane moieties for specific molecular recognition, and drug research and development.

13.
Cell Rep ; 10(4): 516-26, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25620699

RESUMO

The bioactive form of vitamin D [1,25(OH)2D3] regulates mineral and bone homeostasis and exerts potent anti-inflammatory and antiproliferative properties through binding to the vitamin D receptor (VDR). The 3D structures of the VDR ligand-binding domain with 1,25(OH)2D3 or gemini analogs unveiled the molecular mechanism underlying ligand recognition. On the basis of structure-function correlations, we generated a point-mutated VDR (VDR(gem)) that is unresponsive to 1,25(OH)2D3, but the activity of which is efficiently induced by the gemini ligands. Moreover, we show that many VDR target genes are repressed by unliganded VDR(gem) and that mineral ion and bone homeostasis are more impaired in VDR(gem) mice than in VDR null mice, demonstrating that mutations abolishing VDR ligand binding result in more severe skeletal defects than VDR null mutations. As gemini ligands induce VDR(gem) transcriptional activity in mice and normalize their serum calcium levels, VDR(gem) is a powerful tool to further unravel both liganded and unliganded VDR signaling.


Assuntos
Receptores de Calcitriol/química , Receptores de Calcitriol/metabolismo , Animais , Imunoprecipitação da Cromatina , Cristalografia por Raios X , Polarização de Fluorescência , Genótipo , Células HEK293 , Humanos , Células MCF-7 , Camundongos , Camundongos Knockout , Mutação/genética , Ligação Proteica/genética , Receptores de Calcitriol/genética , Espectrometria de Massas por Ionização por Electrospray , Vitamina D/metabolismo
14.
Curr Top Med Chem ; 14(21): 2368-77, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25486941

RESUMO

The vitamin D nuclear receptor (VDR) and its ligand, 1α, 25-dihydroxyvitamin D3 (1,25(OH)2D3, or calcitriol) regulate numerous biological functions. Therefore, VDR represents an important therapeutic target in the treatment of various diseases such as cancers, psoriasis, rickets, renal osteodystrophy, and autoimmune dysfunctions. Despite the number of newly synthesized 1,25(OH)2D3 analogues, the need for highly potential modulators of VDR with precise cell-, gene- or coregulator-selectivity still exists. The information coming from the analysis of crystal structures of VDR-ligand complexes remains one of the most powerful tools to explain and validate the properties of the compounds and, furthermore, to gain new rationales for their modification. The number of reports on VDR-ligand recognition is constantly rising, and herein we review the recently published structural data. With the emphasis on the most promising compounds, such as secosteroidal compounds and 1,25(OH)2D3 mimics, we also highlight other natural ligands for VDR, evidence for the existence of an alternative ligand binding site within LBP, and identification of novel VDR modulators.


Assuntos
Receptores de Calcitriol/química , Receptores de Calcitriol/metabolismo , Vitamina D/farmacologia , Animais , Humanos , Modelos Moleculares , Conformação Proteica
15.
J Med Chem ; 57(11): 4710-9, 2014 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-24818857

RESUMO

The vitamin D receptor (VDR), an endocrine nuclear receptor for 1α,25-dihydroxyvitamin D3, acts also as a bile acid sensor by binding lithocholic acid (LCA). The crystal structure of the zebrafish VDR ligand binding domain in complex with LCA and the SRC-2 coactivator peptide reveals the binding of two LCA molecules by VDR. One LCA binds to the canonical ligand-binding pocket, and the second one, which is not fully buried, is anchored to a site located on the VDR surface. Despite the low affinity of the alternative site, the binding of the second molecule promotes stabilization of the active receptor conformation. Biological activity assays, structural analysis, and molecular dynamics simulations indicate that the recognition of two ligand molecules is crucial for VDR agonism by LCA. The unique binding mode of LCA provides clues for the development of new chemical compounds that target alternative binding sites for therapeutic applications.


Assuntos
Ácido Litocólico/química , Receptores de Calcitriol/agonistas , Proteínas de Peixe-Zebra/agonistas , Animais , Sítios de Ligação , Calorimetria , Cristalografia por Raios X , Humanos , Ligantes , Simulação de Dinâmica Molecular , Mutação , Ligação Proteica , Conformação Proteica , Receptores de Calcitriol/química , Receptores de Calcitriol/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Termodinâmica , Transfecção , Peixe-Zebra , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...