Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 23(1): 674-682, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33336663

RESUMO

Structural organization of hydrogen and oxygen functionalized nanodiamond (ND) particles in hydrosols was investigated using a cryo-TEM method. The formation of chain-like structures was observed for hydrogen functionalized NDs while oxygen functionalized NDs tend to form more compact structures. In order to understand possible interaction mechanisms between NDs in hydrosols and to explain these experimental results, first-principles calculations were performed. Charged H-terminated ND particles and particles with partially dissociated hydroxyl and carboxyl groups on the surface were investigated as models of a real ND particle in solution. For positively charged H-terminated particles, it was established that charge distribution is determined by the values of valence band maximum for the particle facets. For negatively charged oxygen functionalized particles, the charge is localized near functional groups. In both cases, interaction is determined by the interplay between Coulomb interaction and van der Waals attraction. For detailed analysis of the ND interaction, the continual model considering this interplay was developed. The results obtained with this model indicate that the formation of chain structures from linked ND particles is caused by charge separation inside the ND particle. For the H-terminated ND particles in water solution, strongly anisotropic distribution of electrostatic potential around the particles promotes formation of non-compact chain structures of particles via interaction between facets with opposite charges. This effect of charge separation is lower in the oxygen functionalized particles as the charge is localized at the uniformly distributed O-containing functional groups, thus, more compact structures can be formed. These general qualitative statements address the problem of interactions between the large number of ND particles and explain the presented cryo-TEM experimental results.

2.
J Biomed Mater Res A ; 107(2): 312-318, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29896910

RESUMO

For efficient manufacturing of fibrous collagen-based materials by electrospinning, the search on optimal rheological parameters is of the great importance. Rheological characteristics and denaturation of collagen in aqueous dispersions were studied as a function of shear rate and acetic acid concentration in the range of 3-9% w/w at temperature from 20 to 40°C. It was shown that an increase in temperature, acetic acid concentration of the collagen dispersion leads to a significant decrease in its viscosity. It was found that helical conformation of the collagen macromolecules is preserved up to 31°C. An increase in acetic acid concentration leads to a reduction of denaturation temperature. The complex viscosity of collagen dispersions exhibits a sharp drop, followed by a rapid growth of damping factor in the temperature range from 22 to 35°C. Both storage (G') and loss (G″) moduli increase with frequency and collagen concentration. It was revealed that optimal parameters for electrospinning of highly concentrated collagen dispersions can be achieved by adjusting of the concentration of acetic acid, temperature, and stirring speed. As a result, collagen nonwoven materials with diameter from 100 to 700 nm were obtained. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 312-318, 2019.


Assuntos
Colágeno Tipo I/química , Nanofibras/química , Animais , Bovinos , Colágeno Tipo I/ultraestrutura , Nanofibras/ultraestrutura , Conformação Proteica em alfa-Hélice , Desnaturação Proteica , Reologia , Temperatura , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...