Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 446: 1-10, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25646785

RESUMO

Polymeric amines have been intensively studied for application in smart systems and as matrices for the design of composite materials, including bioinspired substances. A new thermo- and pH-responsive polymer was obtained by radical polymerization of N-(3-(diethylamino)propyl)-N-methylacrylamide. Upon heating, the polymer precipitated from aqueous solutions above pH 9; the observed cloud point was dependent on the polymer concentration and decreased from 95°C at pH 9 to 40°C at pH 11. The basicity of the polymer decreased at elevated temperatures owing to an increase in the hydrophobicity-driven compaction of the macromolecules. Dynamic light scattering analysis demonstrated that the formation of large multimolecular associates with radius 1000-2000 nm was initiated from 1 to 2°C below the cloud point. The new polymer is demonstrated to be an effective matrix for various siliceous composite structures, including 200-300 nm solid spherical raspberry-like particles and hollow hemispherical particles of more than 1000 nm diameter. Condensation of silicic acid in the presence of polymeric amines is a model reaction in biosilicification studies, and the obtained data are also discussed from the perspective of the matrix hypothesis for biosilica formation.


Assuntos
Aminas/química , Substâncias Macromoleculares/química , Nanocompostos/química , Polímeros/química , Dióxido de Silício/química , Água/química , Concentração de Íons de Hidrogênio , Tamanho da Partícula , Propriedades de Superfície , Temperatura
2.
PLoS One ; 7(8): e43073, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22900091

RESUMO

BACKGROUND: In crustaceans, several mechanisms provide for the mechanical strength of the cuticular "tools" (dactyli, claws, jaws), which serve to catch and crush food objects. Studies on the mandibles of the endemic Baikal amphipod Acanthogammarus grewingkii by means of electron microscopy and elemental analysis have revealed specific structural features of these mouthparts. METHODOLOGY: The fine structure of the mandible has been studied by means of SEM, TEM, and AFM; methods used to analyze its elemental and phase composition include XEPMA, XPS, SEM-EDS analysis, and XRD. CONCLUSION: Functional adaptations of the mandible in A. grewingkii provide for the optimum combination of mechanical hardness and fracture resistance, which is achieved due to a complex structure and composition of its cutting parts. Teeth of the mandible are covered by a thin layer of silica (10-20 µm). Their epicuticle is characterized by a high density, consists of three layers, and increases in thickness toward the tooth apex. The epicuticle is enriched with Br, while the concentrations of Ca and P reach the peak values in the softer internal tissues of the teeth. These data broaden the view of the diversity of adaptation mechanisms providing for the strengthening of cuticular "tools" in crustaceans.


Assuntos
Anfípodes/anatomia & histologia , Anfípodes/química , Lagos , Animais , Mandíbula/anatomia & histologia , Mandíbula/química , Mandíbula/ultraestrutura , Dente/química , Dente/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA