Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(3): e0300111, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38470891

RESUMO

Better understanding how organisms respond to their abiotic environment, especially at the biochemical level, is critical in predicting population trajectories under climate change. In this study, we measured constitutive stress biomarkers and protein post-translational modifications associated with oxidative stress in Gallotia galloti, an insular lizard species inhabiting highly heterogeneous environments on Tenerife. Tenerife is a small volcanic island in a relatively isolated archipelago off the West coast of Africa. We found that expression of GRP94, a molecular chaperone protein, and levels of protein carbonylation, a marker of cellular stress, change across different environments, depending on solar radiation-related variables and topology. Here, we report in a wild animal population, cross-talk between the baseline levels of the heat shock protein-like GRP94 and oxidative damage (protein carbonylation), which are influenced by a range of available temperatures, quantified through modelled operative temperature. This suggests a dynamic trade-off between cellular homeostasis and oxidative damage in lizards adapted to this thermally and topologically heterogeneous environment.


Assuntos
Proteínas de Choque Térmico , Lagartos , Animais , Estresse Oxidativo , Processamento de Proteína Pós-Traducional , Carbonilação Proteica
2.
Lab Chip ; 23(11): 2664-2682, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37191188

RESUMO

Arginine methylation is a post-translational modification that consists of the transfer of one or two methyl (CH3) groups to arginine residues in proteins. Several types of arginine methylation occur, namely monomethylation, symmetric dimethylation and asymmetric dimethylation, which are catalysed by different protein arginine methyltransferases (PRMTs). Inhibitors of PRMTs have recently entered clinical trials to target several types of cancer, including gliomas (NCT04089449). People with glioblastoma (GBM), the most aggressive form of brain tumour, are among those with the poorest quality of life and likelihood of survival of anyone diagnosed with cancer. There is currently a lack of (pre)clinical research on the possible application of PRMT inhibitors to target brain tumours. Here, we set out to investigate the effects of clinically-relevant PRMT inhibitors on GBM biopsies. We present a new, low-cost, easy to fabricate perfusion device that can maintain GBM tissue in a viable condition for at least eight days post-surgical resection. The miniaturised perfusion device enables the treatment of GBM tissue with PRMT inhibitors ex vivo, and we observed a two-fold increase in apoptosis in treated samples compared to parallel control experiments. Mechanistically, we show thousands of differentially expressed genes after treatment, and changes in the type of arginine methylation of the RNA binding protein FUS that are consistent with hundreds of differential gene splicing events. This is the first time that cross-talk between different types of arginine methylation has been observed in clinical samples after treatment with PRMT inhibitors.


Assuntos
Arginina , Neoplasias Encefálicas , Humanos , Metilação , Qualidade de Vida , Neoplasias Encefálicas/tratamento farmacológico , Perfusão , Processamento de Proteína Pós-Traducional
3.
PNAS Nexus ; 2(5): pgad137, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37228511

RESUMO

Heat alters biology from molecular to ecological levels, but may also have unknown indirect effects. This includes the concept that animals exposed to abiotic stress can induce stress in naive receivers. Here, we provide a comprehensive picture of the molecular signatures of this process, by integrating multiomic and phenotypic data. In individual zebrafish embryos, repeated heat peaks elicited both a molecular response and a burst of accelerated growth followed by a growth slowdown in concert with reduced responses to novel stimuli. Metabolomes of the media of heat treated vs. untreated embryos revealed candidate stress metabolites including sulfur-containing compounds and lipids. These stress metabolites elicited transcriptomic changes in naive receivers related to immune response, extracellular signaling, glycosaminoglycan/keratan sulfate, and lipid metabolism. Consequently, non-heat-exposed receivers (exposed to stress metabolites only) experienced accelerated catch-up growth in concert with reduced swimming performance. The combination of heat and stress metabolites accelerated development the most, mediated by apelin signaling. Our results prove the concept of indirect heat-induced stress propagation toward naive receivers, inducing phenotypes comparable with those resulting from direct heat exposure, but utilizing distinct molecular pathways. Group-exposing a nonlaboratory zebrafish line, we independently confirm that the glycosaminoglycan biosynthesis-related gene chs1 and the mucus glycoprotein gene prg4a, functionally connected to the candidate stress metabolite classes sugars and phosphocholine, are differentially expressed in receivers. This hints at the production of Schreckstoff-like cues in receivers, leading to further stress propagation within groups, which may have ecological and animal welfare implications for aquatic populations in a changing climate.

4.
Cancers (Basel) ; 14(14)2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35884550

RESUMO

Chromobox 2 (CBX2) is a chromatin-binding component of polycomb repressive complex 1, which causes gene silencing. CBX2 expression is elevated in triple-negative breast cancer (TNBC), for which there are few therapeutic options. Here, we aimed to investigate the functional role of CBX2 in TNBC. CBX2 knockdown in TNBC models reduced cell numbers, which was rescued by ectopic expression of wild-type CBX2 but not a chromatin binding-deficient mutant. Blocking CBX2 chromatin interactions using the inhibitor SW2_152F also reduced cell growth, suggesting CBX2 chromatin binding is crucial for TNBC progression. RNA sequencing and gene set enrichment analysis of CBX2-depleted cells identified downregulation of oncogenic signalling pathways, including mTORC1 and E2F signalling. Subsequent analysis identified that CBX2 represses the expression of mTORC1 inhibitors and the tumour suppressor RBL2. RBL2 repression, in turn, inhibits DREAM complex activity. The DREAM complex inhibits E2F signalling, causing cell senescence; therefore, inhibition of the DREAM complex via CBX2 may be a key oncogenic driver. We observed similar effects in oestrogen receptor-positive breast cancer, and analysis of patient datasets suggested CBX2 inhibits RBL2 activity in other cancer types. Therapeutic inhibition of CBX2 could therefore repress mTORC1 activation and promote DREAM complex-mediated senescence in TNBC and could have similar effects in other cancer types.

5.
J Anim Ecol ; 91(6): 1163-1179, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34695234

RESUMO

Understanding the genomic basis of adaptation to different abiotic environments is important in the context of climate change and resulting short-term environmental fluctuations. Using functional and comparative genomics approaches, we here investigated whether signatures of genomic adaptation to a set of environmental parameters are concentrated in specific subsets of genes and functions in lacertid lizards and other vertebrates. We first identify 200 genes with signatures of positive diversifying selection from transcriptomes of 24 species of lacertid lizards and demonstrate their involvement in physiological and morphological adaptations to climate. To understand how functionally similar these genes are to previously predicted candidate functions for climate adaptation and to compare them with other vertebrate species, we then performed a meta-analysis of 1,100 genes under selection obtained from -omics studies in vertebrate species adapted to different abiotic factors. We found that the vertebrate gene set formed a tightly connected interactome, which was to 23% enriched in previously predicted functions of adaptation to climate, and to a large part (18%) involved in organismal stress response. We found a much higher degree of identical genes being repeatedly selected among different animal groups (43.6%), and of functional similarity and post-translational modifications than expected by chance, and no clear functional division between genes used for ectotherm and endotherm physiological strategies. In total, 171 out of 200 genes of Lacertidae were part of this network. These results highlight an important role of a comparatively small set of genes and their functions in environmental adaptation and narrow the set of candidate pathways and markers to be used in future research on adaptation and stress response related to climate change.


Assuntos
Genômica , Lagartos , Aclimatação/genética , Adaptação Fisiológica/genética , Animais , Mudança Climática , Lagartos/genética , Seleção Genética
6.
Amino Acids ; 54(4): 591-600, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34181092

RESUMO

Cardiovascular disease is the major cause of death worldwide. Extensive cardiovascular biomarkers are available using blood tests but very few, if any, investigations have described non-invasive tests for cardiovascular biomarkers based on readily available hair samples. Here we show, first, that human hair proteins are post-translationally modified by arginine methylation (ArgMe). Using western blot, proteomic data mining and mass spectrometry, we identify several ArgMe events in hair proteins and we show that keratin-83 is extensively modified by ArgMe in the human hair. Second, using a preliminary cohort (n = 18) of heterogenous healthy donors, we show that the levels of protein ArgMe in hair correlate with serum concentrations of a well-established cardiovascular biomarker, asymmetric dimethylarginine (ADMA). Compared to blood collection, hair sampling is cheaper, simpler, requires minimal training and carries less health and safety and ethical risks. For these reasons, developing the potential of hair protein ArgMe as clinically useful cardiovascular biomarkers through further research could be useful in future prevention and diagnosis of cardiovascular disease.


Assuntos
Doenças Cardiovasculares , Cabelo , Arginina/metabolismo , Biomarcadores/metabolismo , Doenças Cardiovasculares/metabolismo , Cabelo/química , Humanos , Metilação , Proteômica
7.
J Therm Biol ; 102: 103114, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34863478

RESUMO

Aquatic organisms must cope with both rising and rapidly changing temperatures. These thermal changes can affect numerous traits, from molecular to ecological scales. Biotic stressors are already known to induce the release of chemical cues which trigger behavioural responses in other individuals. In this study, we infer whether fluctuating temperature, as an abiotic stressor, may similarly induce stress-like responses in individuals not directly exposed to the stressor. To test this hypothesis, zebrafish (Danio rerio) embryos were exposed for 24 h to fluctuating thermal stress, to medium in which another embryo was thermally stressed before ("stress medium"), and to a combination of these. Growth, behaviour, expression of molecular markers, and of whole-embryo cortisol were used to characterise the thermal stress response and its propagation between embryos. Both fluctuating high temperature and stress medium significantly accelerated development, by shifting stressed embryos from segmentation to pharyngula stages, and altered embryonic activity. Importantly, we found that the expression of sulfide:quinone oxidoreductase (SQOR), the antioxidant gene SOD1, and of interleukin-1ß (IL-1ß) were significantly altered by stress medium. This study illustrates the existence of positive thermal stress feedback loops in zebrafish embryos where heat stress can induce stress-like responses in conspecifics, but which might operate via different molecular pathways. If similar effects also occur under less severe heat stress regimes, this mechanism may be relevant in natural settings as well.


Assuntos
Embrião não Mamífero/metabolismo , Retroalimentação Fisiológica , Resposta ao Choque Térmico , Animais , Desenvolvimento Embrionário , Fenótipo , Peixe-Zebra
8.
ACS Pharmacol Transl Sci ; 4(5): 1567-1577, 2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34661075

RESUMO

Protein arginine methyltransferases (PRMTs) catalyze the transfer of methyl groups to arginine residues in proteins. PRMT inhibitors are novel, promising drugs against cancer that are currently in clinical trials, which include oral administration of the drugs. However, off-target activities of systemically available PRMT inhibitors have not yet been investigated. In this work, we study the relevance of arginine methylation in platelets and investigate the effect of PRMT inhibitors on platelet function and on the expression of relevant platelet receptors. We show that (1) key platelet proteins are modified by arginine methylation; (2) incubation of human platelets with PRMT inhibitors for 4 h results in impaired capacity of platelets to aggregate in response to thrombin and collagen, with IC50 values in the µM range; and (3) treatment with PRMT inhibitors leads to decreased membrane expression and reduced activation of the critical platelet integrin αIIbß3. Our contribution opens new avenues for research on arginine methylation in platelets, including the repurposing of arginine methylation inhibitors as novel antiplatelet drugs. We also recommend that current and future clinical trials with PRMT inhibitors consider any adverse effects associated with platelet inhibition of these emerging anticancer drugs.

9.
Amino Acids ; 53(4): 489-506, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33404912

RESUMO

Despite intense research efforts, our pharmaceutical repertoire against high-grade brain tumours has not been able to increase patient survival for a decade and life expectancy remains at less than 16 months after diagnosis, on average. Inhibitors of protein arginine methyltransferases (PRMTs) have been developed and investigated over the past 15 years and have now entered oncology clinical trials, including for brain tumours. This review collates recent advances in the understanding of the role of PRMTs and arginine methylation in brain tumours. We provide an up-to-date literature review on the mechanisms for PRMT regulation. These include endogenous modulators such as alternative splicing, miRNA, post-translational modifications and PRMT-protein interactions, and synthetic inhibitors. We discuss the relevance of PRMTs in brain tumours with a particular focus on PRMT1, -2, -5 and -8. Finally, we include a future perspective where we discuss possible routes for further research on arginine methylation and on the use of PRMT inhibitors in the context of brain tumours.


Assuntos
Arginina/metabolismo , Neoplasias Encefálicas/metabolismo , Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/enzimologia , Inibidores Enzimáticos/uso terapêutico , Humanos , Metilação , Processamento de Proteína Pós-Traducional , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo
10.
Int J Cardiol ; 282: 76-80, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30772011

RESUMO

BACKGROUND: The inhibitory subunit of cardiac troponin (cTnI) is a gold standard cardiac biomarker and also an essential protein in cardiomyocyte excitation-contraction coupling. The interactions of cTnI with other proteins are fine-tuned by post-translational modification of cTnI. Mutations in cTnI can lead to hypertrophic cardiomyopathy. METHODS AND RESULTS: Here we report, for the first time, that cTnI is modified by arginine methylation in human myocardium. Using Western blot, we observed reduced levels of cTnI arginine methylation in human hypertrophic cardiomyopathy compared to dilated cardiomyopathy biopsies. Similarly, using a rat model of cardiac hypertrophy we observed reduced levels of cTnI arginine methylation compared to sham controls. Using mass spectrometry, we identified cTnI methylation sites at R74/R79 and R146/R148 in human cardiac samples. R146 and R148 lie at the boundary between the critical cTnI inhibitory and switch peptides; PRMT1 methylated an extended inhibitory peptide at R146 and R148 in vitro. Mutations at R145 that have been associated with hypertrophic cardiomyopathy hampered R146/R148 methylation by PRMT1 in vitro. H9c2 cardiac-like cells transfected with plasmids encoding for a methylation-deficient R146A/R148A cTnI protein developed cell hypertrophy, with a 32% increase in cell size after 72 h, compared to control cells. DISCUSSION: Our results provide evidence for a novel and significant cTnI post-translational modification. Our work opens the door to translational investigations of cTnI arginine methylation as a biomarker of disease, which can include e.g. cardiomyopathies, myocardial infarction and heart failure, and offers a novel way to investigate the effect of cTnI mutations in the inhibitory/switch peptides.


Assuntos
Arginina/genética , Arginina/metabolismo , Miocárdio/metabolismo , Troponina I/genética , Troponina I/metabolismo , Sequência de Aminoácidos , Animais , Humanos , Masculino , Metilação , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Ratos , Ratos Sprague-Dawley
11.
Free Radic Biol Med ; 129: 504-519, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30342191

RESUMO

Obesity leading to hyperlipidaemia and atherosclerosis is recognised to induce morphological and metabolic changes in many tissues. However, hyperlipidaemia can occur in the absence of obesity. The impact of the latter scenario on skeletal muscle and liver is not understood sufficiently. In this regard, we used the Apolipoprotein E-deficient (ApoE-/-) mouse model, an established model of hyperlipidaemia and atherosclerosis, that does not become obese when subjected to a high-fat diet, to determine the impact of Western-type diet (WD) and ApoE deficiency on skeletal muscle morphological, metabolic and biochemical properties. To establish the potential of therapeutic targets, we further examined the impact of Nox2 pharmacological inhibition on skeletal muscle redox biology. We found ectopic lipid accumulation in skeletal muscle and the liver, and altered skeletal muscle morphology and intramuscular triacylglycerol fatty acid composition. WD and ApoE deficiency had a detrimental impact in muscle metabolome, followed by perturbed gene expression for fatty acid uptake and oxidation. Importantly, there was enhanced oxidative stress in the skeletal muscle and development of liver steatosis, inflammation and oxidative protein modifications. Pharmacological inhibition of Nox2 decreased reactive oxygen species production and protein oxidative modifications in the muscle of ApoE-/- mice subjected to a Western-type diet. This study provides key evidence to better understand the pathophysiology of skeletal muscle in the context of hyperlipidaemia and atherosclerosis and identifies Nox2 as a potential target for attenuating oxidative stress in skeletal muscle in a mouse model of obesity-independent hyperlipidaemia.


Assuntos
Aterosclerose/tratamento farmacológico , Hiperlipidemias/tratamento farmacológico , Hipolipemiantes/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , NADPH Oxidase 2/genética , Animais , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Aterosclerose/etiologia , Aterosclerose/genética , Aterosclerose/patologia , Dieta Ocidental/efeitos adversos , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica , Hiperlipidemias/etiologia , Hiperlipidemias/genética , Hiperlipidemias/patologia , Metabolismo dos Lipídeos/genética , Fígado/efeitos dos fármacos , Fígado/enzimologia , Fígado/patologia , Masculino , Metaboloma/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/enzimologia , Músculo Esquelético/patologia , NADPH Oxidase 2/antagonistas & inibidores , NADPH Oxidase 2/metabolismo , Obesidade , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Peptídeos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
12.
Proteomes ; 6(4)2018 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-30347783

RESUMO

Glioblastomas (GBM) are the most common grade 4 brain tumours; patients have very poor prognosis with an average survival of 15 months after diagnosis. Novel research lines have begun to explore aberrant protein arginine methylation (ArgMe) as a possible therapeutic target in GBM and ArgMe inhibitors are currently in clinical trials. Enzymes known as protein arginine methyltransferases (PRMT1-9) can lead to mono- or di-ArgMe, and in the latter case symmetric or asymmetric dimethylation (SDMA and ADMA, respectively). Using the most common GBM cell line, we have profiled the expression of PRMTs, used ArgMe inhibitors as tools to investigate post-translational modifications cross-talk and measured the effect of ArgMe inhibitors on cell viability. We have identified novel SDMA events upon inhibition of ADMA in GBM cells and spheroids. We have observed cross-talk between ADMA and lysine acetylation in GBM cells and platelets. Treatment of GBM cells with furamidine, a PRMT1 inhibitor, reduces cell viability in 2D and 3D models. These data provide new molecular understanding of a disease with unmet clinical needs.

13.
Channels (Austin) ; 11(5): 476-481, 2017 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-28718687

RESUMO

The cardiac voltage-gated sodium channel (gene: SCN5A, protein: NaV1.5) is responsible for the sodium current that initiates the cardiomyocyte action potential. Research into the mechanisms of SCN5A gene expression has gained momentum over the last few years. We have recently described the transcriptional regulation of SCN5A by GATA4 transcription factor. In this addendum to our study, we report our observations that 1) the linker between domains I and II (LDI-DII) of NaV1.5 contains a nuclear localization signal (residues 474-481) that is necessary to localize LDI-DII into the nucleus, and 2) nuclear LDI-DII activates the SCN5A promoter in gene reporter assays using cardiac-like H9c2 cells. Given that voltage-gated sodium channels are known targets of proteases such as calpain, we speculate that NaV1.5 degradation is signaled to the cell transcriptional machinery via nuclear localization of LDI-DII and subsequent stimulation of the SCN5A promoter.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Potenciais de Ação , Linhagem Celular , Expressão Gênica , Regulação da Expressão Gênica , Humanos , Ativação do Canal Iônico , Miócitos Cardíacos/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Regiões Promotoras Genéticas , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteólise
14.
Proteomics Clin Appl ; 11(1-2)2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27600370

RESUMO

PURPOSE: Arginine methylation (ArgMe) is one of the most ubiquitous PTMs, and hundreds of proteins undergo ArgMe in, for example, brain. However, the scope of ArgMe in many tissues, including the heart, is currently underexplored. Here, we aimed to (i) identify proteins undergoing ArgMe in human organs, and (ii) expose the relevance of ArgMe in cardiac disease. EXPERIMENTAL DESIGN: The publicly available proteomic data is used to search for ArgMe in 13 human tissues. To induce H9c2 cardiac-like cell hypertrophy glucose is used. RESULTS: The results show that ArgMe is mainly tissue-specific; nevertheless, the authors suggest an embryonic origin of core ArgMe events. In the heart, 103 mostly novel ArgMe sites in 58 nonhistone proteins are found. The authors provide compelling evidence that cardiac protein ArgMe is relevant to cardiomyocyte ontology, and important for proper cardiac function. This is highlighted by the fact that genetic mutations affecting methylated arginine positions are often associated with cardiac disease, including hypertrophic cardiomyopathy. The pilot experimental data suggesting significant changes in ArgMe profiles of H9c2 cells upon induction of cell hypertrophy using glucose is provided. CONCLUSIONS AND CLINICAL RELEVANCE: The work calls for in-depth investigation of ArgMe in normal and diseased tissues using methods including clinical proteomics.


Assuntos
Arginina/metabolismo , Miocárdio/metabolismo , Cardiomiopatia Hipertrófica/metabolismo , Cardiomiopatia Hipertrófica/patologia , Linhagem Celular , Feto/metabolismo , Humanos , Metilação , Modelos Biológicos , Mioblastos/citologia , Mioblastos/metabolismo
15.
J Mol Cell Cardiol ; 102: 74-82, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27894866

RESUMO

Aberrant expression of the sodium channel gene (SCN5A) has been proposed to disrupt cardiac action potential and cause human cardiac arrhythmias, but the mechanisms of SCN5A gene regulation and dysregulation still remain largely unexplored. To gain insight into the transcriptional regulatory networks of SCN5A, we surveyed the promoter and first intronic regions of the SCN5A gene, predicting the presence of several binding sites for GATA transcription factors (TFs). Consistent with this prediction, chromatin immunoprecipitation (ChIP) and sequential ChIP (Re-ChIP) assays show co-occupancy of cardiac GATA TFs GATA4 and GATA5 on promoter and intron 1 SCN5A regions in fresh-frozen human left ventricle samples. Gene reporter experiments show GATA4 and GATA5 synergism in the activation of the SCN5A promoter, and its dependence on predicted GATA binding sites. GATA4 and GATA6 mRNAs are robustly expressed in fresh-frozen human left ventricle samples as measured by highly sensitive droplet digital PCR (ddPCR). GATA5 mRNA is marginally but still clearly detected in the same samples. Importantly, GATA4 mRNA levels are strongly and positively correlated with SCN5A transcript levels in the human heart. Together, our findings uncover a novel mechanism of GATA TFs in the regulation of the SCN5A gene in human heart tissue. Our studies suggest that GATA5 but especially GATA4 are main contributors to SCN5A gene expression, thus providing a new paradigm of SCN5A expression regulation that may shed new light into the understanding of cardiac disease.


Assuntos
Fator de Transcrição GATA4/metabolismo , Regulação da Expressão Gênica , Miocárdio/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Transcrição Gênica , Animais , Sítios de Ligação , Linhagem Celular , Fator de Transcrição GATA5/metabolismo , Perfilação da Expressão Gênica , Humanos , Mutação , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Ratos
16.
Amino Acids ; 48(3): 641-651, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26503606

RESUMO

Voltage-gated sodium channels are essential proteins in brain physiology, as they generate the sodium currents that initiate neuronal action potentials. Voltage-gated sodium channels expression, localisation and function are regulated by a range of transcriptional and post-translational mechanisms. Here, we review our understanding of regulation of brain voltage-gated sodium channels, in particular SCN1A (NaV1.1), SCN2A (NaV1.2), SCN3A (NaV1.3) and SCN8A (NaV1.6), by transcription factors, by alternative splicing, and by post-translational modifications. Our focus is strongly centred on recent research lines, and newly generated knowledge.


Assuntos
Encéfalo/metabolismo , Processamento de Proteína Pós-Traducional , Transcrição Gênica , Canais de Sódio Disparados por Voltagem/genética , Animais , Humanos , Canais de Sódio Disparados por Voltagem/metabolismo
17.
Heart Rhythm ; 12(7): 1636-43, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25814417

RESUMO

BACKGROUND: Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a difficult-to-diagnose cause of sudden cardiac death (SCD). We identified a family of 1400 individuals with multiple cases of CPVT, including 36 SCDs during youth. OBJECTIVES: We sought to identify the genetic cause of CPVT in this family, to preventively treat and clinically characterize the mutation-positive individuals, and to functionally characterize the pathogenic mechanisms of the mutation. METHODS: Genetic testing was performed for 1404 relatives. Mutation-positive individuals were preventively treated with ß-blockers and clinically characterized with a serial exercise treadmill test (ETT) and Holter monitoring. In vitro functional studies included caffeine sensitivity and store overload-induced calcium release activity of the mutant channel in HEK293 cells. RESULTS: We identified the p.G357S_RyR2 mutation, in the cardiac ryanodine receptor, in 179 family members and in 6 SCD cases. No SCD was observed among treated mutation-positive individuals over a median follow-up of 37 months; however, 3 relatives who had refused genetic testing (confirmed mutation-positive individuals) experienced SCD. Holter monitoring did not provide relevant information for CPVT diagnosis. One single ETT was unable to detect complex cardiac arrhythmias in 72% of mutation-positive individuals, though the serial ETT improved the accuracy. Functional studies showed that the G357S mutation increased caffeine sensitivity and store overload-induced calcium release activity under conditions that mimic catecholaminergic stress. CONCLUSION: Our study supports the use of genetic testing to identify individuals at risk of SCD to undertake prophylactic interventions. We also show that the pathogenic mechanisms of p.G357S_RyR2 appear to depend on ß-adrenergic stimulation.


Assuntos
Antagonistas Adrenérgicos beta/uso terapêutico , Morte Súbita Cardíaca , Desfibriladores Implantáveis , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Taquicardia Ventricular , Adolescente , Adulto , Criança , Morte Súbita Cardíaca/etiologia , Morte Súbita Cardíaca/prevenção & controle , Eletrocardiografia Ambulatorial/métodos , Teste de Esforço/métodos , Feminino , Predisposição Genética para Doença , Testes Genéticos/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Linhagem , Medição de Risco , Espanha , Taquicardia Ventricular/complicações , Taquicardia Ventricular/diagnóstico , Taquicardia Ventricular/genética , Taquicardia Ventricular/terapia , Resultado do Tratamento
18.
Amino Acids ; 47(2): 429-34, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25501501

RESUMO

Arginine methylation is a novel post-translational modification within the voltage-gated ion channel superfamily, including the cardiac sodium channel, NaV1.5. We show that NaV1.5 R513 methylation decreases S516 phosphorylation rate by 4 orders of magnitude, the first evidence of protein kinase A inhibition by arginine methylation. Reciprocally, S516 phosphorylation blocks R513 methylation. NaV1.5 p.G514C, associated to cardiac conduction disease, abrogates R513 methylation, while leaving S516 phosphorylation rate unchanged. This is the first report of methylation-phosphorylation cross-talk of a cardiac ion channel.


Assuntos
Miocárdio/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/química , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Humanos , Metilação , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Fosforilação/fisiologia
19.
J Mol Cell Cardiol ; 76: 126-9, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25172307

RESUMO

The α subunit of the cardiac voltage-gated sodium channel, NaV1.5, provides the rapid sodium inward current that initiates cardiomyocyte action potentials. Here, we analyzed for the first time the post-translational modifications of NaV1.5 purified from end-stage heart failure human cardiac tissue. We identified R526 methylation as the major post-translational modification of any NaV1.5 arginine or lysine residue. Unexpectedly, we found that the N terminus of NaV1.5 was: 1) devoid of the initiation methionine, and 2) acetylated at the resulting initial alanine residue. This is the first evidence for N-terminal acetylation in any member of the voltage-gated ion channel superfamily. Our results open the door to explore NaV1.5 N-terminal acetylation and arginine methylation levels as drivers or markers of end-stage heart failure.


Assuntos
Arginina/metabolismo , Insuficiência Cardíaca/metabolismo , Miocárdio/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Processamento de Proteína Pós-Traducional , Acetilação , Sequência de Aminoácidos , Cardiomiopatia Dilatada/metabolismo , Humanos , Metilação , Isquemia Miocárdica/metabolismo
20.
FEBS Lett ; 587(19): 3159-65, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23912080

RESUMO

The α-subunit of the cardiac voltage-gated sodium channel (NaV1.5) plays a central role in cardiomyocyte excitability. We have recently reported that NaV1.5 is post-translationally modified by arginine methylation. Here, we aimed to identify the enzymes that methylate NaV1.5, and to describe the role of arginine methylation on NaV1.5 function. Our results show that protein arginine methyl transferase (PRMT)-3 and -5 methylate NaV1.5 in vitro, interact with NaV1.5 in human embryonic kidney (HEK) cells, and increase NaV1.5 current density by enhancing NaV1.5 cell surface expression. Our observations are the first evidence of regulation of a voltage-gated ion channel, including calcium, potassium, sodium and TRP channels, by arginine methylation.


Assuntos
Miocárdio/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Membrana Celular/metabolismo , Células Cultivadas , Transferência Ressonante de Energia de Fluorescência , Humanos , Técnicas de Patch-Clamp
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...