Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Evol Biol ; 30(2): 235-243, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27905665

RESUMO

Female multiple mating has been extensively studied to understand how nonobvious benefits, generally thought to be of genetic nature, could overcome heavy costs such as an increased risk of infection during mating. However, the impact of infection itself on multiple mating has rarely been addressed. The interaction between the bacterium Wolbachia and its terrestrial crustacean host, Armadillidium vulgare, is a relevant model to investigate this question. In this association, Wolbachia is able to turn genetic males into functional females (i.e. feminization), thereby distorting the sex ratio and decreasing the number of available males at the population scale. Moreover, in A. vulgare, females have been shown to mate multiply under laboratory conditions and males prefer uninfected females over infected ones. Additionally, different Wolbachia strains are known to infect A. vulgare and these strains differ in their transmission rate and virulence. All these elements suggest a potential impact of different Wolbachia strains on multiple mating. To investigate this assumption, we collected gravid females in a wild A. vulgare population harbouring both uninfected females and females infected with one of two different Wolbachia strains (wVulM and wVulC) and performed paternity analyses on the obtained broods using microsatellite markers. We demonstrate that (i) multiple paternity is common in this wild population of A. vulgare, with a mean number of fathers of 4.48 ± 1.24 per brood and (ii) females infected with wVulC produced broods with a lower multiple paternity level compared with females infected with wVulM and uninfected ones. This work improves our knowledge of the impact of infections on reproductive strategies.


Assuntos
Isópodes/parasitologia , Paternidade , Razão de Masculinidade , Wolbachia/patogenicidade , Animais , Feminino , Masculino , Repetições de Microssatélites
2.
J Evol Biol ; 27(8): 1623-30, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24836164

RESUMO

For conspecific parasites sharing the same host, kin recognition can be advantageous when the fitness of one individual depends on what another does; yet, evidence of kin recognition among parasites remains limited. Some trematodes, like Coitocaecum parvum, have plastic life cycles including two alternative life-history strategies. The parasite can wait for its intermediate host to be eaten by a fish definitive host, thus completing the classical three-host life cycle, or mature precociously and produce eggs while still inside its intermediate host as a facultative shortcut. Two different amphipod species are used as intermediate hosts by C. parvum, one small and highly mobile and the other larger, sedentary, and burrow dwelling. Amphipods often harbour two or more C. parvum individuals, all capable of using one or the other developmental strategy, thus creating potential conflicts or cooperation opportunities over transmission routes. This model was used to test the kin recognition hypothesis according to which cooperation between two conspecific individuals relies on the individuals' ability to evaluate their degree of genetic similarity. First, data showed that levels of intrahost genetic similarity between co-infecting C. parvum individuals differed between host species. Second, genetic similarity between parasites sharing the same host was strongly linked to their likelihood of adopting identical developmental strategies. Two nonexclusive hypotheses that could explain this pattern are discussed: kin recognition and cooperation between genetically similar parasites and/or matching genotypes involving parasite genotype-host compatibility filters.


Assuntos
Anfípodes/parasitologia , Variação Genética , Estágios do Ciclo de Vida/fisiologia , Modelos Biológicos , Trematódeos/genética , Animais , Coinfecção , Primers do DNA/genética , Genótipo , Interações Hospedeiro-Parasita , Repetições de Microssatélites/genética , Nova Zelândia , Reação em Cadeia da Polimerase , Especificidade da Espécie , Estatísticas não Paramétricas , Trematódeos/fisiologia
3.
Mol Ecol ; 23(10): 2619-35, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24750488

RESUMO

Animal-bacterial symbioses are highly dynamic in terms of multipartite interactions, both between the host and its symbionts as well as between the different bacteria constituting the symbiotic community. These interactions will be reflected by the titres of the individual bacterial taxa, for example via host regulation of bacterial loads or competition for resources between symbionts. Moreover, different host tissues represent heterogeneous microhabitats for bacteria, meaning that host-associated bacteria might establish tissue-specific bacterial communities. Wolbachia are widespread endosymbiotic bacteria, infecting a large number of arthropods and filarial nematodes. However, relatively little is known regarding direct interactions between Wolbachia and other bacteria. This study represents the first quantitative investigation of tissue-specific Wolbachia-microbiota interactions in the terrestrial isopod Armadillidium vulgare. To this end, we obtained a more complete picture of the Wolbachia distribution patterns across all major host tissues, integrating all three feminizing Wolbachia strains (wVulM, wVulC, wVulP) identified to date in this host. Interestingly, the different Wolbachia strains exhibited strain-specific tissue distribution patterns, with wVulM reaching lower titres in most tissues. These patterns were consistent across different host genetic backgrounds and might reflect different co-evolutionary histories between the Wolbachia strains and A. vulgare. Moreover, Wolbachia-infected females carried higher total bacterial loads in several, but not all, tissues, irrespective of the Wolbachia strain. Taken together, this quantitative approach indicates that Wolbachia is part of a potentially more diverse bacterial community, as exemplified by the presence of highly abundant bacterial taxa in the midgut caeca of several A. vulgare populations.


Assuntos
Evolução Biológica , Isópodes/microbiologia , Simbiose/genética , Wolbachia/fisiologia , Animais , Carga Bacteriana , Feminino , Genética Populacional , Masculino , Microbiota , Repetições de Microssatélites , Análise de Sequência de DNA , Wolbachia/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...