Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neural Dev ; 19(1): 7, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902780

RESUMO

Adult neurogenesis, which takes place in both vertebrate and invertebrate species, is the process by which new neurons are born and integrated into existing functional neural circuits, long after embryonic development. Most studies in mammals suggest that self-renewing stem cells are the source of the new neurons, although the extent of self-renewal is a matter of debate. In contrast, research in the crayfish Procambarus clarkii has demonstrated that the neural progenitors producing adult-born neurons are capable of both self-renewing and consuming (non-self-renewing) divisions. However, self-renewing divisions are relatively rare, and therefore the production of adult-born neurons depends heavily on progenitors that are not replenishing themselves. Because the small pool of neural progenitors in the neurogenic niche is never exhausted throughout the long lives of these animals, we hypothesized that there must also be an extrinsic source of these cells. It was subsequently demonstrated that the neural progenitors originate in hemocytes (blood cells) produced by the immune system that travel in the circulation before ultimately integrating into niches where the neural lineage begins. The current study examines the developmental lineage of the three hemocyte types - hyaline (HC), semigranular (SGC) and granular (GC) cells - with the goal of understanding the origins of the progenitor cells that produce adult-born neurons. Longstanding qualitative metrics for hemocyte classification were validated quantitatively. Then, in a longitudinal study, proliferation markers were used to label the hemocytes in vivo, followed by sampling the circulating hemocyte population over the course of two months. Hemolymph samples were taken at intervals to track the frequencies of the different hemocyte types. These data reveal sequential peaks in the relative frequencies of HCs, SGCs and GCs, which were identified using qualitative and quantitative measures. These findings suggest that the three hemocyte types comprise a single cellular lineage that occurs in the circulation, with each type as a sequential progressive stage in hemocyte maturation beginning with HCs and ending with GCs. When combined with previously published data, this timeline provides additional evidence that HCs serve as the primary neural progenitor during adult neurogenesis in P. clarkii.


Assuntos
Linhagem da Célula , Hemócitos , Células-Tronco Neurais , Neurogênese , Animais , Neurogênese/fisiologia , Células-Tronco Neurais/citologia , Células-Tronco Neurais/fisiologia , Hemócitos/citologia , Hemócitos/fisiologia , Linhagem da Célula/fisiologia , Astacoidea/citologia , Astacoidea/fisiologia , Neurônios/fisiologia , Neurônios/citologia
2.
iScience ; 25(4): 103993, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35340434

RESUMO

Adult-born neurons are incorporated into brain circuits in the crayfish Procambarus clarkii, as in many vertebrate and invertebrate species. Adult neurogenesis depends on several conserved features, including the presence of neurogenic niches housing progenitor cells and the expansion, migration, and differentiation of their daughters, the neural precursor cells. However, in contrast to mammalian species, the progenitors initiating the neurogenic lineage in P. clarkii do not undergo long-term self-renewal. A central question is the mode of replenishment of these cells. Experiments have shown that hemocytes generated by the immune system, and not other cell types, are attracted to and incorporated into the niche. The present studies highlight the interdependency of the immune and nervous systems in the generation of adult-born neurons, by demonstrating that hyaline hemocytes are the probable neural progenitor cells, and that serotonin and the cytokine astakine 1 regulate both immune function and adult neurogenesis.

3.
Dev Neurobiol ; 81(8): 939-974, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34554654

RESUMO

Nervous system development has been intensely studied in insects (especially Drosophila melanogaster), providing detailed insights into the genetic regulatory network governing the formation and maintenance of the neural stem cells (neuroblasts) and the differentiation of their progeny. Despite notable advances over the last two decades, neurogenesis in other arthropod groups remains by comparison less well understood, hampering finer resolution of evolutionary cell type transformations and changes in the genetic regulatory network in some branches of the arthropod tree of life. Although the neurogenic cellular machinery in malacostracan crustaceans is well described morphologically, its genetic molecular characterization is pending. To address this, we established an in situ hybridization protocol for the crayfish Procambarus virginalis and studied embryonic expression patterns of a suite of key genes, encompassing three SoxB group transcription factors, two achaete-scute homologs, a Snail family member, the differentiation determinants Prospero and Brain tumor, and the neuron marker Elav. We document cell type expression patterns with notable similarities to insects and branchiopod crustaceans, lending further support to the homology of hexapod-crustacean neuroblasts and their cell lineages. Remarkably, in the crayfish head region, cell emigration from the neuroectoderm coupled with gene expression data points to a neuroblast-independent initial phase of brain neurogenesis. Further, SoxB group expression patterns suggest an involvement of Dichaete in segmentation, in concordance with insects. Our target gene set is a promising starting point for further embryonic studies, as well as for the molecular genetic characterization of subregions and cell types in the neurogenic systems in the adult crayfish brain.


Assuntos
Astacoidea , Células-Tronco Neurais , Animais , Astacoidea/genética , Astacoidea/metabolismo , Drosophila melanogaster/genética , Redes Reguladoras de Genes , Neurogênese
4.
Cell Mol Neurobiol ; 40(6): 967-989, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31980992

RESUMO

Decapod crustaceans, like mammals, retain the ability to make new neurons throughout life. In mammals, immune cells are closely associated with stem cells that generate adult-born neurons. In crayfish, evidence suggests that immune cells (hemocytes) originating in the immune system travel to neurogenic regions and transform into neural progenitor cells. This nontraditional immune activity takes place continuously under normal physiological conditions, but little is known under pathological conditions (neurodegeneration). In this study, the immune system and its relationship with neurogenesis were investigated during neurodegeneration (unilateral antennular ablation) in adult crayfish. Our experiments show that after ablation (1) Proliferating cells decrease in neurogenic areas of the adult crayfish brain; (2) The immune response, but not neurogenesis, is ablation-side dependent; (3) Inducible nitric oxide synthase (iNOS) plays a crucial role in the neurogenic niche containing neural progenitors during the immune response; (4) Brain areas targeted by antennular projections respond acutely (15 min) to the lesion, increasing the number of local immune cells; (5) Immune cells are recruited to the area surrounding the ipsilateral neurogenic niche; and (6) The vasculature in the niche responds acutely by dilation and possibly also neovascularization. We conclude that immune cells are important in both neurodegeneration and neurogenesis by contributing in physiological conditions to the maintenance of the number of neural precursor cells in the neurogenic niche (neurogenesis), and in pathological conditions (neurodegeneration) by coordinating NO release and vascular responses associated with the neurogenic niche. Our data suggest that neural damage and recovery participate in a balance between these competing immune cell roles.


Assuntos
Astacoidea/imunologia , Sistema Imunitário/imunologia , Degeneração Neural/imunologia , Neurogênese/imunologia , Animais , Astacoidea/ultraestrutura , Vasos Sanguíneos/metabolismo , Encéfalo/patologia , Bromodesoxiuridina/metabolismo , Contagem de Células , Proliferação de Células , Feminino , Glutamato-Amônia Ligase/metabolismo , Hemócitos/metabolismo , Masculino , Neurópilo/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Nicho de Células-Tronco
5.
J Comp Neurol ; 528(9): 1459-1485, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-31743442

RESUMO

Two decades after the discovery of adult-born neurons in the brains of decapod crustaceans, the deutocerebral proliferative system (DPS) producing these neural lineages has become a model of adult neurogenesis in invertebrates. Studies on crayfish have provided substantial insights into the anatomy, cellular dynamics, and regulation of the DPS. Contrary to traditional thinking, recent evidence suggests that the neurogenic niche in the crayfish DPS lacks self-renewing stem cells, its cell pool being instead sustained via integration of hemocytes generated by the innate immune system. Here, we investigated the origin, division and migration patterns of the adult-born neural progenitor (NP) lineages in detail. We show that the niche cell pool is not only replenished by hemocyte integration but also by limited numbers of symmetric cell divisions with some characteristics reminiscent of interkinetic nuclear migration. Once specified in the niche, first generation NPs act as transit-amplifying intermediate NPs that eventually exit and produce multicellular clones as they move along migratory streams toward target brain areas. Different clones may migrate simultaneously in the streams but occupy separate tracks and show spatio-temporally flexible division patterns. Based on this, we propose an extended DPS model that emphasizes structural similarities to pseudostratified neuroepithelia in other arthropods and vertebrates. This model includes hemocyte integration and intrinsic cell proliferation to synergistically counteract niche cell pool depletion during the animal's lifespan. Further, we discuss parallels to recent findings on mammalian adult neurogenesis, as both systems seem to exhibit a similar decoupling of proliferative replenishment divisions and consuming neurogenic divisions.


Assuntos
Astacoidea/citologia , Encéfalo/citologia , Células-Tronco Neurais/citologia , Neurogênese/fisiologia , Animais , Astacoidea/fisiologia , Diferenciação Celular/fisiologia , Linhagem da Célula/fisiologia , Movimento Celular/fisiologia , Hemócitos/citologia
6.
Elife ; 82019 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-31469073

RESUMO

The brain architecture of shrimp living in deep-sea vents provides clues to how these organisms have adapted to extreme living.


Assuntos
Decápodes , Fontes Hidrotermais , Animais , Encéfalo , Crustáceos , Neuroanatomia
7.
BMC Evol Biol ; 18(1): 47, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29621973

RESUMO

BACKGROUND: Comparative studies of neuroanatomy and neurodevelopment provide valuable information for phylogenetic inference. Beyond that, they reveal transformations of neuroanatomical structures during animal evolution and modifications in the developmental processes that have shaped these structures. In the extremely diverse Arthropoda, such comparative studies contribute with ever-increasing structural resolution and taxon coverage to our understanding of nervous system evolution. However, at the neurodevelopmental level, in-depth data remain still largely confined to comparably few laboratory model organisms. Therefore, we studied postembryonic neurogenesis in six species of the bizarre Pycnogonida (sea spiders), which - as the likely sister group of all remaining chelicerates - promise to illuminate neurodevelopmental changes in the chelicerate lineage. RESULTS: We performed in vivo cell proliferation experiments with the thymidine analogs 5-bromo-2'-deoxyuridine and 5-ethynl-2'-deoxyuridine coupled to fluorescent histochemical staining and immunolabeling, in order to compare ventral nerve cord anatomy and to localize and characterize centers of postembryonic neurogenesis. We report interspecific differences in the architecture of the subesophageal ganglion (SEG) and show the presence of segmental "ventral organs" (VOs) that act as centers of neural cell production during gangliogenesis. These VOs are either incorporated into the ganglionic soma cortex or found on the external ganglion surface. Despite this difference, several shared features support homology of the two VO types, including (1) a specific arrangement of the cells around a small central cavity, (2) the presence of asymmetrically dividing neural stem cell-like precursors, (3) the migration of newborn cells along corresponding pathways into the cortex, and (4) the same VO origin and formation earlier in development. CONCLUSIONS: Evaluation of our findings relative to current hypotheses on pycnogonid phylogeny resolves a bipartite SEG and internal VOs as plesiomorphic conditions in pycnogonids. Although chelicerate taxa other than Pycnogonida lack comparable VOs, they are a characteristic feature of myriapod gangliogenesis. Accordingly, we propose internal VOs with neurogenic function to be part of the ground pattern of Arthropoda. Further, our findings illustrate the importance of dense sampling in old arthropod lineages - even if as gross-anatomically uniform as Pycnogonida - in order to reliably differentiate plesiomorphic from apomorphic neurodevelopmental characteristics prior to outgroup comparison.


Assuntos
Estruturas Animais/anatomia & histologia , Estruturas Animais/embriologia , Artrópodes/anatomia & histologia , Neurogênese , Estruturas Animais/citologia , Animais , Artrópodes/classificação , Divisão Celular Assimétrica , Bromodesoxiuridina/metabolismo , Movimento Celular , Proliferação de Células , Desoxiuridina/análogos & derivados , Desoxiuridina/metabolismo , Larva/anatomia & histologia , Neurônios/citologia , Filogenia , Especificidade da Espécie
8.
Front Neurosci ; 11: 662, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29270102

RESUMO

New neurons continue to be born and integrated into the brains of adult decapod crustaceans. Evidence in crayfish indicates that the 1st-generation neural precursors that generate these adult-born neurons originate in the immune system and travel to the neurogenic niche via the circulatory system. These precursors are attracted to the niche, become integrated amongst niche cells, and undergo mitosis within a few days; both daughters of this division migrate away from the niche toward the brain clusters where they will divide again and differentiate into neurons. In the crustacean brain, the rate of neuronal production is highly sensitive to serotonin (5-hydroxytryptamine, 5-HT) levels. These effects are lineage-dependent, as serotonin's influence is limited to late 2nd-generation neural precursors and their progeny. Experiments indicate that serotonin regulates adult neurogenesis in the crustacean brain by multiple mechanisms: via direct effects of serotonin released from brain neurons into the hemolymph or by local release onto target cells, or by indirect influences via a serotonin-mediated release of agents from other regions, such as hormones from the sinus gland and cytokines from hematopoietic tissues. Evidence in crayfish also indicates that serotonin mediates the attraction of neural precursors generated by the immune system to the neurogenic niche. Thus, studies in the crustacean brain have revealed multiple roles for this monoamine in adult neurogenesis, and identified several pathways by which serotonin influences the generation of new neurons.

9.
Brain Behav Evol ; 87(3): 146-155, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27560194

RESUMO

The 1st-generation neural precursors in the crustacean brain are functionally analogous to neural stem cells in mammals. Their slow cycling, migration of their progeny, and differentiation of their descendants into neurons over several weeks are features of the neural precursor lineage in crayfish that also characterize adult neurogenesis in mammals. However, the 1st-generation precursors in crayfish do not self-renew, contrasting with conventional wisdom that proposes the long-term self-renewal of adult neural stem cells. Nevertheless, the crayfish neurogenic niche, which contains a total of 200-300 cells, is never exhausted and neurons continue to be produced in the brain throughout the animal's life. The pool of neural precursors in the niche therefore cannot be a closed system, and must be replenished from an extrinsic source. Our in vitro and in vivo data show that cells originating in the innate immune system (but not other cell types) are attracted to and incorporated into the neurogenic niche, and that they express a niche-specific marker, glutamine synthetase. Further, labeled hemocytes that undergo adoptive transfer to recipient crayfish generate cells in neuronal clusters in the olfactory pathway of the adult brain. These hemocyte descendants express appropriate neurotransmitters and project to target areas typical of neurons in these regions. These studies indicate that under natural conditions, the immune system provides neural precursors supporting adult neurogenesis in the crayfish brain, challenging the canonical view that ectodermal tissues generating the embryonic nervous system are the sole source of neurons in the adult brain. However, these are not the first studies that directly implicate the immune system as a source of neural precursor cells. Several types of data in mammals, including adoptive transfers of bone marrow or stem cells as well as the presence of fetal microchimerism, suggest that there must be a population of cells that are able to access the brain and generate new neurons in these species.

11.
Bioessays ; 37(5): 495-501, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25761245

RESUMO

The current model of adult neurogenesis in mammals suggests that adult-born neurons are generated by stem cells that undergo long-term self-renewal, and that a lifetime supply of stem cells resides in the brain. In contrast, it has recently been demonstrated that adult-born neurons in crayfish are generated by precursors originating in the immune system. This is particularly interesting because studies done many years ago suggest that a similar mechanism might exist in rodents and humans, with bone marrow providing stem cells that can generate neurons. However, the relevance of these findings for natural mechanisms underlying adult neurogenesis in mammals is not clear, because of uncertainties at many levels. We argue here that the recent findings in crayfish send a strong signal to re-examine existing data from rodents and humans, and to design new experiments that will directly test the contributions of the immune system to adult neurogenesis in mammals.


Assuntos
Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Animais , Barreira Hematoencefálica/citologia , Barreira Hematoencefálica/metabolismo , Células da Medula Óssea/citologia , Hemócitos/citologia , Humanos , Sistema Imunitário/metabolismo , Células-Tronco Mesenquimais/citologia , Neurogênese/fisiologia
12.
Dev Cell ; 30(3): 322-33, 2014 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-25117683

RESUMO

Neurogenesis is an ongoing process in the brains of adult decapod crustaceans. However, the first-generation precursors that produce adult-born neurons, which reside in a neurogenic niche, are not self-renewing in crayfish and must be replenished. The source of these neuronal precursors is unknown. Here, we report that adult-born neurons in crayfish can be derived from hemocytes. Following adoptive transfer of 5-ethynyl-2'-deoxyuridine (EdU)-labeled hemocytes, labeled cells populate the neurogenic niche containing the first-generation neuronal precursors. Seven weeks after adoptive transfer, EdU-labeled cells are located in brain clusters 9 and 10 (where adult-born neurons differentiate) and express appropriate neurotransmitters. Moreover, the number of cells composing the neurogenic niche in crayfish is tightly correlated with total hemocyte counts (THCs) and can be manipulated by raising or lowering THC. These studies identify hemocytes as a source of adult-born neurons in crayfish and demonstrate that the immune system is a key contributor to adult neurogenesis.


Assuntos
Envelhecimento/imunologia , Astacoidea/citologia , Sistema Imunitário/citologia , Células-Tronco Neurais/citologia , Neurogênese/imunologia , Neurônios/citologia , Animais , Encéfalo/citologia , Encéfalo/imunologia , Movimento Celular/fisiologia , Proliferação de Células , Nicho de Células-Tronco/imunologia
13.
Dev Neurobiol ; 74(6): 602-15, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24339155

RESUMO

Life-long neurogenesis is a characteristic feature of many vertebrate and invertebrate species. In decapod crustaceans, new neurons are added throughout life to two cell clusters containing local (cluster 9) and projection (cluster 10) interneurons in the olfactory pathway. Adult-born neurons in clusters 9 and 10 in crayfish have the anatomical properties and chemistry of mature neurons by 6 months after birth. Here we use 5-bromo-2'-deoxyuridine (BrdU) incorporation to pulse label mitotically active cells in these cell clusters, followed by a survival time of up to 8 months, during which crayfish (Cherax destructor) were sacrificed at intervals and the numbers of BrdU-labeled cells quantified. We find a decrease in the numbers of BrdU-labeled cells in cell cluster 10 between the first and second weeks following BrdU exposure, suggesting a period of cell death shortly after proliferation. Additional delayed cell divisions in both cell clusters are indicated by increases in labeled cells long after the BrdU clearing time. The differentiation time of these cells into neurons was defined by detection of the first immunoreactivity for the transmitter SIFamide in cluster 10 BrdU-labeled cells, which begins at 4 weeks after BrdU labeling; the numbers of SIFamide-labeled cells continues to increase over the following month. Experiments testing whether proliferation and survival of Cluster 10 cells are influenced by locomotor activity provided no evidence of a correlation between activity levels and cell proliferation, but suggest a strong influence of locomotor activity on cell survival.


Assuntos
Astacoidea/anatomia & histologia , Encéfalo/citologia , Diferenciação Celular/fisiologia , Neurogênese/fisiologia , Neurônios/fisiologia , Análise de Variância , Animais , Bromodesoxiuridina/metabolismo , Proliferação de Células/fisiologia , Sobrevivência Celular/fisiologia , Microscopia Confocal , Atividade Motora/fisiologia
14.
Stem Cells Dev ; 22(7): 1027-41, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23181901

RESUMO

Neuronal stem cells residing in a niche on the surface of the adult crayfish (Procambarus clarkii) brain are not self-renewing. However, the neuronal precursors in the niche are not depleted despite continued neurogenesis and the exit of precursor cells from the niche throughout the organism's life. The neurogenic niche is therefore not a closed system, and we have previously proposed that the stem cell pool is replenished from the hematopoietic system. Noonin et al. (2012) demonstrated that the hematopoietic system in the crayfish Pacifastacus leniusculus includes an anterior proliferation center (APC) lying near the brain; they suggest that multipotent stem cells are concentrated in this region, and that the APC may provide neuronal stem cells for adult neurogenesis. The present study extends this work by describing the location and cellular organization of hematopoietic tissues in P. clarkii. We find that the APC lies within the cor frontale, or auxiliary heart, which pumps hemolymph to the brain and eyes through the cerebral and ophthalmic arteries, respectively. Vascular extensions of the cerebral artery converge on the neurogenic niche. APC cells lie in layered sheets within the cor frontale and form rosette-like structures reminiscent of stem cells in other developing tissues. We confirm here that APC cells in P. clarkii have characteristics of multipotent stem cells, and that their location within the cor frontale allows direct access to regions in the central nervous system in which adult neurogenesis occurs.


Assuntos
Astacoidea/fisiologia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Multipotentes/citologia , Células-Tronco Neurais/citologia , Neurogênese/fisiologia , Nicho de Células-Tronco , Animais , Astacoidea/citologia , Astacoidea/metabolismo , Encéfalo/embriologia , Encéfalo/metabolismo , Proliferação de Células , Feminino , Células-Tronco Hematopoéticas/metabolismo , Masculino , Mitocôndrias/metabolismo , Células-Tronco Multipotentes/metabolismo , Células-Tronco Neurais/metabolismo , Espécies Reativas de Oxigênio/metabolismo
15.
Int J Dev Neurosci ; 31(7): 657-66, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23219763

RESUMO

Adult-born neurons in crayfish (Procambarus clarkii) are the progeny of 1st-generation precursor cells (functionally analogous to neuronal stem cells in vertebrates) that are located in a neurogenic niche on the ventral surface of the brain. The daughters of these precursor cells migrate along the processes of bipolar niche cells to proliferation zones in the cell clusters where the somata of the olfactory interneurons reside. Here they divide again, producing offspring that differentiate into olfactory local and projection neurons. The features of this neuronal assembly line, and the fact that it continues to function when the brain is isolated and perfused or maintained in organotypic culture, provide opportunities unavailable in other organisms to explore the sequence of cellular and molecular events leading to the production of new neurons in adult brains. Further, we have determined that the 1st-generation precursor cells are not a self-renewing population, and that the niche is, nevertheless, not depleted as the animals grow and age. We conclude, therefore, that the niche is not a closed system and that there must be an extrinsic source of neuronal stem cells. Based on in vitro studies demonstrating that cells extracted from the hemolymph are attracted to the niche, as well as the intimate relationship between the niche and vasculature, we hypothesize that the hematopoietic system is a likely source of these cells.


Assuntos
Encéfalo/citologia , Proliferação de Células , Células-Tronco Neurais/metabolismo , Neurogênese/fisiologia , Animais , Astacoidea
16.
PLoS One ; 7(6): e39267, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22723980

RESUMO

The first-generation precursors producing adult-born neurons in the crayfish (Procambarus clarkii) brain reside in a specialized niche located on the ventral surface of the brain. In the present work, we have explored the organization and ultrastructure of this neurogenic niche, using light-level, confocal and electron microscopic approaches. Our goals were to define characteristics of the niche microenvironment, examine the morphological relationships between the niche and the vasculature and observe specializations at the boundary between the vascular cavity located centrally in the niche. Our results show that the niche is almost fully encapsulated by blood vessels, and that cells in the vasculature come into contact with the niche. This analysis also characterizes the ultrastructure of the cell types in the niche. The Type I niche cells are by far the most numerous, and are the only cell type present superficially in the most ventral cell layers of the niche. More dorsally, Type I cells are intermingled with Types II, III and IV cells, which are observed far less frequently. Type I cells have microvilli on their apical cell surfaces facing the vascular cavity, as well as junctional complexes between adjacent cells, suggesting a role in regulating transport from the blood into the niche cells. These studies demonstrate a close relationship between the neurogenic niche and vascular system in P. clarkii. Furthermore, the specializations of niche cells contacting the vascular cavity are also typical of the interface between the blood/cerebrospinal fluid (CSF)-brain barriers of vertebrates, including cells of the subventricular zone (SVZ) producing new olfactory interneurons in mammals. These data indicate that tissues involved in producing adult-born neurons in the crayfish brain use strategies that may reflect fundamental mechanisms preserved in an evolutionarily broad range of species, as proposed previously. The studies described here extend our understanding of neurovascular relationships in the brain of P. clarkii by characterizing the organization and ultrastructure of the neurogenic niche and associated vascular tissues.


Assuntos
Encéfalo/ultraestrutura , Microambiente Celular/fisiologia , Neurogênese/fisiologia , Neurônios/citologia , Citoesqueleto de Actina/ultraestrutura , Animais , Astacoidea/fisiologia , Astacoidea/ultraestrutura , Feminino , Masculino , Microvilosidades/ultraestrutura
17.
Cell Tissue Res ; 349(2): 493-503, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22526631

RESUMO

This study provides a new perspective on the long-standing problem of the nature of the decapod crustacean blood-brain interface. Previous studies of crustacean blood-brain interface permeability have relied on invasive histological, immunohistochemical and electrophysiological techniques, indicating a leaky non-selective blood-brain barrier. The present investigation involves the use of magnetic resonance imaging (MRI), a method for non-invasive longitudinal tracking of tracers in real-time. Differential uptake rates of two molecularly distinct MRI contrast agents, namely manganese (Mn(II)) and Magnevist® (Gd-DTPA), were observed and quantified in the crayfish, Cherax destructor. Contrast agents were injected into the pericardium and uptake was observed with longitudinal MRI for approximately 14.5 h. Mn(II) was taken up quickly into neural tissue (within 6.5 min), whereas Gd-DTPA was not taken up into neural tissue and was instead restricted to the intracerebral vasculature or excreted into nearby sinuses. Our results provide evidence for a charge-selective intracerebral blood-brain interface in the crustacean nervous system, a structural characteristic once considered too complex for a lower-order arthropod.


Assuntos
Astacoidea/metabolismo , Barreira Hematoencefálica/metabolismo , Meios de Contraste/farmacocinética , Gadolínio DTPA/farmacocinética , Imageamento por Ressonância Magnética , Manganês/farmacocinética , Animais , Astacoidea/anatomia & histologia , Barreira Hematoencefálica/anatomia & histologia , Encéfalo/anatomia & histologia , Encéfalo/metabolismo , Permeabilidade Capilar
18.
Neural Dev ; 7: 1, 2012 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-22225949

RESUMO

BACKGROUND: In the decapod crustacean brain, neurogenesis persists throughout the animal's life. After embryogenesis, the central olfactory pathway integrates newborn olfactory local and projection interneurons that replace old neurons or expand the existing population. In crayfish, these neurons are the descendants of precursor cells residing in a neurogenic niche. In this paper, the development of the niche was documented by monitoring proliferating cells with S-phase-specific markers combined with immunohistochemical, dye-injection and pulse-chase experiments. RESULTS: Between the end of embryogenesis and throughout the first post-embryonic stage (POI), a defined transverse band of mitotically active cells (which we will term 'the deutocerebral proliferative system' (DPS) appears. Just prior to hatching and in parallel with the formation of the DPS, the anlagen of the niche appears, closely associated with the vasculature. When the hatchling molts to the second post-embryonic stage (POII), the DPS differentiates into the lateral (LPZ) and medial (MPZ) proliferative zones. The LPZ and MPZ are characterized by a high number of mitotically active cells from the beginning of post-embryonic life; in contrast, the developing niche contains only very few dividing cells, a characteristic that persists in the adult organism. CONCLUSIONS: Our data suggest that the LPZ and MPZ are largely responsible for the production of new neurons in the early post-embryonic stages, and that the neurogenic niche in the beginning plays a subordinate role. However, as the neuroblasts in the proliferation zones disappear during early post-embryonic life, the neuronal precursors in the niche gradually become the dominant and only mechanism for the generation of new neurons in the adult brain.


Assuntos
Astacoidea/crescimento & desenvolvimento , Células-Tronco Neurais/fisiologia , Neurogênese/fisiologia , Neurônios/fisiologia , Nicho de Células-Tronco/fisiologia , Animais , Astacoidea/citologia , Astacoidea/embriologia , Encéfalo/citologia , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Feminino , Células-Tronco Neurais/citologia , Neurônios/citologia , Condutos Olfatórios/citologia , Condutos Olfatórios/embriologia , Condutos Olfatórios/crescimento & desenvolvimento
19.
Eur J Neurosci ; 34(6): 870-83, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21929622

RESUMO

New neurons are produced and integrated into circuits in the adult brains of many organisms, including crustaceans. In some crustacean species, the first-generation neuronal precursors reside in a niche exhibiting characteristics analogous to mammalian neurogenic niches. However, unlike mammalian niches where several generations of neuronal precursors co-exist, the lineage of precursor cells in crayfish is spatially separated allowing the influence of environmental and endogenous regulators on specific generations in the neuronal precursor lineage to be defined. Experiments also demonstrate that the first-generation neuronal precursors in the crayfish Procambarus clarkii are not self-renewing. A source external to the neurogenic niche must therefore provide cells that replenish the first-generation precursor pool, because although these cells divide and produce a continuous efflux of second-generation cells from the niche, the population of first-generation niche precursors is not diminished with growth and aging. In vitro studies show that cells extracted from the hemolymph, but not other tissues, are attracted to and incorporated into the neurogenic niche, a phenomenon that appears to involve serotonergic mechanisms. We propose that, in crayfish, the hematopoietic system may be a source of cells that replenish the niche cell pool. These and other studies reviewed here establish decapod crustaceans as model systems in which the processes underlying adult neurogenesis, such as stem cell origins and transformation, can be readily explored. Studies in diverse species where adult neurogenesis occurs will result in a broader understanding of fundamental mechanisms and how evolutionary processes may have shaped the vertebrate/mammalian condition.


Assuntos
Encéfalo/crescimento & desenvolvimento , Decápodes/fisiologia , Hematopoese/fisiologia , Neurogênese/fisiologia , Animais , Divisão Celular , Linhagem da Célula/fisiologia , Movimento Celular/fisiologia , Circulação Cerebrovascular/fisiologia , Meio Ambiente , Glutamato-Amônia Ligase/metabolismo , Lisencefalia/patologia , Células-Tronco Neurais/fisiologia , Neurônios Receptores Olfatórios/fisiologia
20.
BMC Neurosci ; 12: 53, 2011 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-21635768

RESUMO

BACKGROUND: Adult neurogenesis, the production and integration of new neurons into circuits in the brains of adult animals, is a common feature of a variety of organisms, ranging from insects and crustaceans to birds and mammals. In the mammalian brain the 1st-generation neuronal precursors, the astrocytic stem cells, reside in neurogenic niches and are reported to undergo self-renewing divisions, thereby providing a source of new neurons throughout an animal's life. In contrast, our work shows that the 1st-generation neuronal precursors in the crayfish (Procambarus clarkii) brain, which also have glial properties and lie in a neurogenic niche resembling that of vertebrates, undergo geometrically symmetrical divisions and both daughters appear to migrate away from the niche. However, in spite of this continuous efflux of cells, the number of neuronal precursors in the crayfish niche continues to expand as the animals grow and age. Based on these observations we have hypothesized that (1) the neuronal stem cells in the crayfish brain are not self-renewing, and (2) a source external to the neurogenic niche must provide cells that replenish the stem cell pool. RESULTS: In the present study, we tested the first hypothesis using sequential double nucleoside labeling to track the fate of 1st- and 2nd-generation neuronal precursors, as well as testing the size of the labeled stem cell pool following increasing incubation times in 5-bromo-2'-deoxyuridine (BrdU). Our results indicate that the 1st-generation precursor cells in the crayfish brain, which are functionally analogous to neural stem cells in vertebrates, are not a self-renewing population. In addition, these studies establish the cycle time of these cells. In vitro studies examining the second hypothesis show that Cell Tracker™ Green-labeled cells extracted from the hemolymph, but not other tissues, are attracted to and incorporated into the neurogenic niche, a phenomenon that appears to involve serotonergic mechanisms. CONCLUSIONS: These results challenge our current understanding of self-renewal capacity as a defining characteristic of all adult neuronal stem cells. In addition, we suggest that in crayfish, the hematopoietic system may be a source of cells that replenish the niche stem cell pool.


Assuntos
Células-Tronco Adultas/citologia , Encéfalo/citologia , Células-Tronco Neurais/citologia , Neurogênese/fisiologia , Neurônios/citologia , Nicho de Células-Tronco/citologia , Células-Tronco Adultas/fisiologia , Animais , Astacoidea , Astrócitos/citologia , Astrócitos/fisiologia , Encéfalo/fisiologia , Glutamato-Amônia Ligase/metabolismo , Células-Tronco Neurais/fisiologia , Neurônios/fisiologia , Serotonina/metabolismo , Nicho de Células-Tronco/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...