Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Sci Rep ; 13(1): 15525, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37726322

RESUMO

Interventional radiologists are chronically exposed to low-dose ionizing radiation (IR), which may represent a health risk. The aim of the present study was to evaluate genomic instability by analyzing chromosomal aberrations, micronuclei, and 53BP1 DNA repair foci in peripheral blood lymphocytes of radiologists. Based on the IAEA guidelines on biodosimetry using dicentrics, the average protracted whole-body dose in radiologists were estimated. Since preleukemic fusion genes (PFG) are the primary events leading to leukemia, we also studied their presence by RT-qPCR and FISH. No significant difference in 53BP1 foci and incidence of PFG (MLL-AF4, MLL-AF9, AML1-ETO, BCR-ABL p190) was found in cells of interventional radiologists in comparison to controls. However, our results showed an increased frequency of micronuclei and various types of chromosomal aberrations including dicentrics in interventional radiologists. The average protracted whole body estimated dose was defined at 452.63 mGy. We also found a significantly higher amplification of the MLL gene segment and increased RNA expression in cells of interventional radiologists in comparison to controls. In conclusion, our results showed that long-term low-dose IR induces genomic instability in interventional radiologists.


Assuntos
Instabilidade Genômica , Radiologia Intervencionista , Humanos , Aberrações Cromossômicas , Reparo do DNA , Radiação Ionizante
2.
Int J Radiat Biol ; 99(11): 1660-1668, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37145321

RESUMO

PURPOSE: Although breast cancer (BC) patients benefit from radiotherapy (RT), some radiosensitive (RS) patients suffer from side effects caused by ionizing radiation in healthy tissues. It is thought that RS is underlaid by a deficiency in the repair of DNA double-strand breaks (DSB). DNA repair proteins such as p53-binding protein 1 (53BP1) and phosphorylated histone H2AX (γH2AX), form DNA repair foci at the DSB locations and thus serve as DSB biomarkers. Peripheral blood lymphocytes (PBL) are commonly believed to be an appropriate cell system for RS assessment using DNA repair foci. The amount of DSB may also be influenced by chemotherapy (CHT), which is often chosen as the first treatment modality before RT. As it is not always possible to analyze blood samples immediately after collection, there is a need for cryopreservation of PBL in liquid nitrogen. However, cryopreservation may potentially affect the number of DNA repair foci. In this work, we studied the effect of cryopreservation and CHT on the amount of DNA repair foci in PBL of BC patients undergoing radiotherapy. MATERIALS AND METHODS: The effect of cryopreservation was studied by immunofluorescence analysis of 53BP1 and γH2AX proteins at different time intervals after in vitro irradiation. The effect of chemotherapy was analyzed by fluorescent labelling of 53BP1 and γH2AX proteins in PBL collected before, during, and after RT. RESULTS: Higher number of primary 53BP1/γH2AX foci was observed in frozen cells indicating that cryopreservation affects the formation of DNA repair foci in PBL of BC patients. In CHT-treated patients, a higher number of foci were found before RT, but no differences were observed during and after the RT. CONCLUSIONS: Cryopreservation is the method of choice for analyzing DNA repair residual foci, but only similarly treated and preserved cells should be used for comparison of primary foci. CHT induces DNA repair foci in PBL of BC patients, but this effect disappears during radiotherapy.


Assuntos
Neoplasias da Mama , Histonas , Humanos , Feminino , Histonas/metabolismo , Neoplasias da Mama/radioterapia , Reparo do DNA , Linfócitos/efeitos da radiação , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Criopreservação
3.
Biomedicines ; 11(4)2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37189740

RESUMO

About 5% of patients undergoing radiotherapy (RT) develop RT-related side effects. To assess individual radiosensitivity, we collected peripheral blood from breast cancer patients before, during and after the RT, and γH2AX/53BP1 foci, apoptosis, chromosomal aberrations (CAs) and micronuclei (MN) were analyzed and correlated with the healthy tissue side effects assessed by the RTOG/EORTC criteria. The results showed a significantly higher level of γH2AX/53BP1 foci before the RT in radiosensitive (RS) patients in comparison to normal responding patients (NOR). Analysis of apoptosis did not reveal any correlation with side effects. CA and MN assays displayed an increase in genomic instability during and after RT and a higher frequency of MN in the lymphocytes of RS patients. We also studied time kinetics of γH2AX/53BP1 foci and apoptosis after in vitro irradiation of lymphocytes. Higher levels of primary 53BP1 and co-localizing γH2AX/53BP1 foci were detected in cells from RS patients as compared to NOR patients, while no difference in the residual foci or apoptotic response was found. The data suggested impaired DNA damage response in cells from RS patients. We suggest γH2AX/53BP1 foci and MN as potential biomarkers of individual radiosensitivity, but they need to be evaluated with a larger cohort of patients for clinics.

4.
Int J Mol Sci ; 24(7)2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37047553

RESUMO

Although the prevalence of leukemia is increasing, the agents responsible for this increase are not definitely known. While ionizing radiation (IR) was classified as a group one carcinogen by the IARC, the IR-induced cancers, including leukemia, are indistinguishable from those that are caused by other factors, so the risk estimation relies on epidemiological data. Several epidemiological studies on atomic bomb survivors and persons undergoing IR exposure during medical investigations or radiotherapy showed an association between radiation and leukemia. IR is also known to induce chromosomal translocations. Specific chromosomal translocations resulting in preleukemic fusion genes (PFGs) are generally accepted to be the first hit in the onset of many leukemias. Several studies indicated that incidence of PFGs in healthy newborns is up to 100-times higher than childhood leukemia with the same chromosomal aberrations. Because of this fact, it has been suggested that PFGs are not able to induce leukemia alone, but secondary mutations are necessary. PFGs also have to occur in specific cell populations of hematopoetic stem cells with higher leukemogenic potential. In this review, we describe the connection between IR, PFGs, and cancer, focusing on recurrent PFGs where an association with IR has been established.


Assuntos
Leucemia , Neoplasias Induzidas por Radiação , Recém-Nascido , Humanos , Criança , Translocação Genética , Neoplasias Induzidas por Radiação/genética , Neoplasias Induzidas por Radiação/epidemiologia , Leucemia/genética , Aberrações Cromossômicas , Radiação Ionizante
5.
Artigo em Inglês | MEDLINE | ID: mdl-37048013

RESUMO

In the 1990s, the Institute of Electrical and Electronics Engineers (IEEE) restricted its risk assessment for human exposure to radiofrequency radiation (RFR) in seven ways: (1) Inappropriate focus on heat, ignoring sub-thermal effects. (2) Reliance on exposure experiments performed over very short times. (3) Overlooking time/amplitude characteristics of RFR signals. (4) Ignoring carcinogenicity, hypersensitivity, and other health conditions connected with RFR. (5) Measuring cellphone Specific Absorption Rates (SAR) at arbitrary distances from the head. (6) Averaging SAR doses at volumetric/mass scales irrelevant to health. (7) Using unrealistic simulations for cell phone SAR estimations. Low-cost software and hardware modifications are proposed here for cellular phone RFR exposure mitigation: (1) inhibiting RFR emissions in contact with the body, (2) use of antenna patterns reducing the Percent of Power absorbed in the Head (PPHead) and body and increasing the Percent of Power Radiated for communications (PPR), and (3) automated protocol-based reductions of the number of RFR emissions, their duration, or integrated dose. These inexpensive measures do not fundamentally alter cell phone functions or communications quality. A health threat is scientifically documented at many levels and acknowledged by industries. Yet mitigation of RFR exposures to users does not appear as a priority with most cell phone manufacturers.


Assuntos
Telefone Celular , Exposição à Radiação , Humanos , Ondas de Rádio/efeitos adversos , Comunicação
7.
Int J Mol Sci ; 23(22)2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36430865

RESUMO

In a previous study of the effects of intermittent extremely low frequency (ELF) magnetic fields (MF) on umbilical cord blood lymphocytes (UCBL), we evaluated MF amplitudes between 6 µT and 24 µT and found an effect only for those below 13 µT. This suggested the existence of an amplitude window. In this brief communication, we further tested this hypothesis. UCBLs from healthy newborns were isolated and exposed for 72 h to an intermittent ELF-MF (triangular, 7.8 Hz, 250 s ON/250 s OFF) with 6 different amplitudes between 3 µT and 12 µT, utilizing an oblong coil. Percentage of viable, early apoptotic (EA), and late apoptotic/necrotic (LAN) cells were determined by flow cytometry. Moreover, reactive oxygen species (ROS) were determined at 1 h and 3 h of the exposure. Like in our previous work, neither EA, nor LAN, nor ROS were statistically significantly affected by the intermittent ELF-MF. However, the percentage of viable cells was decreased by exposure to the fields with intensities of 6.5 µT and 12 µT (p < 0.05; and p = 0.057 for 8.5 µT). ELF-MF decreased the percentage of viable cells for fields down to 6.5 µT, but not for 5 µT, 4 µT, or 3 µT. Combined with our previous findings, the results reported here indicate an amplitude window effect between 6 µT and 13 µT. The obtained data are in line with a notion of amplitude and frequency windows, which request scanning of both amplitude and frequency while studying the ELF-MF effects.


Assuntos
Sangue Fetal , Campos Magnéticos , Recém-Nascido , Humanos , Espécies Reativas de Oxigênio , Linfócitos , Citometria de Fluxo
8.
Int J Mol Sci ; 22(14)2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34298941

RESUMO

Clinical research aiming at objectively identifying and characterizing diseases via clinical observations and biological and radiological findings is a critical initial research step when establishing objective diagnostic criteria and treatments. Failure to first define such diagnostic criteria may lead research on pathogenesis and etiology to serious confounding biases and erroneous medical interpretations. This is particularly the case for electrohypersensitivity (EHS) and more particularly for the so-called "provocation tests", which do not investigate the causal origin of EHS but rather the EHS-associated particular environmental intolerance state with hypersensitivity to man-made electromagnetic fields (EMF). However, because those tests depend on multiple EMF-associated physical and biological parameters and have been conducted in patients without having first defined EHS objectively and/or endpoints adequately, they cannot presently be considered to be valid pathogenesis research methodologies. Consequently, the negative results obtained by these tests do not preclude a role of EMF exposure as a symptomatic trigger in EHS patients. Moreover, there is no proof that EHS symptoms or EHS itself are caused by psychosomatic or nocebo effects. This international consensus report pleads for the acknowledgement of EHS as a distinct neuropathological disorder and for its inclusion in the WHO International Classification of Diseases.


Assuntos
Biomarcadores/metabolismo , Hipersensibilidade/metabolismo , Sensibilidade Química Múltipla/metabolismo , Animais , Consenso , Diagnóstico por Imagem/métodos , Testes Diagnósticos de Rotina/métodos , Campos Eletromagnéticos , Humanos , Doenças do Sistema Nervoso/metabolismo
9.
Int J Mol Sci ; 22(11)2021 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-34067339

RESUMO

Dephosphorylation inhibitor calyculin A (cal A) has been reported to inhibit the disappearance of radiation-induced γH2AX DNA repair foci in human lymphocytes. However, other studies reported no change in the kinetics of γH2AX focus induction and loss in irradiated cells. While apoptosis might interplay with the kinetics of focus formation, it was not followed in irradiated cells along with DNA repair foci. Thus, to validate plausible explanations for significant variability in outputs of these studies, we evaluated the effect of cal A (1 and 10 nM) on γH2AX/53BP1 DNA repair foci and apoptosis in irradiated (1, 5, 10, and 100 cGy) human umbilical cord blood lymphocytes (UCBL) using automated fluorescence microscopy and annexin V-FITC/propidium iodide assay/γH2AX pan-staining, respectively. No effect of cal A on γH2AX and colocalized γH2AX/53BP1 foci induced by low doses (≤10 cGy) of γ-rays was observed. Moreover, 10 nM cal A treatment decreased the number of all types of DNA repair foci induced by 100 cGy irradiation. 10 nM cal A treatment induced apoptosis already at 2 h of treatment, independently from the delivered dose. Apoptosis was also detected in UCBL treated with lower cal A concentration, 1 nM, at longer cell incubation, 20 and 44 h. Our data suggest that apoptosis triggered by cal A in UCBL may underlie the failure of cal A to maintain radiation-induced γH2AX foci. All DSB molecular markers used in this study responded linearly to low-dose irradiation. Therefore, their combination may represent a strong biodosimetry tool for estimation of radiation response to low doses. Assessment of colocalized γH2AX/53BP1 improved the threshold of low dose detection.


Assuntos
Apoptose/efeitos dos fármacos , Sangue Fetal/efeitos dos fármacos , Histonas/metabolismo , Linfócitos/efeitos dos fármacos , Toxinas Marinhas/farmacologia , Oxazóis/farmacologia , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Dano ao DNA/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Relação Dose-Resposta à Radiação , Sangue Fetal/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Linfócitos/metabolismo , Microscopia de Fluorescência/métodos , Fosforilação/efeitos dos fármacos
10.
Cytometry A ; 99(12): 1198-1208, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34089242

RESUMO

DNA double strand breaks (DSB) induced by ionizing radiation (IR) are usually measured using γH2AX/53BP1 DNA repair foci, that is considered to be the most sensitive assay for DSB analysis. While fluorescence microscopy (FM) is the gold standard for this analysis, imaging flow cytometry (IFC) may offer number of advantages such as lack of the fluorescence background, higher number of cells analyzed, and higher sensitivity in detection of DNA damage induced by IR at low doses. Along with appearance of γH2AX foci, the variable fraction of the cells exhibits homogeneously stained γH2AX signal resulting in so-called γH2AX pan-staining, which is believed to appear at early stages of apoptosis. Here, we investigated incidence of γH2AX pan-staining at different time points after irradiation with γ-rays using IFC and compared the obtained data with the data from FM. Appearance of γH2AX pan-staining during the apoptotic process was further analyzed by fluorescence-activated cell sorting (FACS) of cells at different stages of apoptosis and subsequent immunofluorescence analysis. Our results show that IFC was able to reveal dose dependence of pan-staining, while FM failed to detect all pan-staining cells. Moreover, we found that γH2AX pan-staining could be induced by therapeutic, but not low doses of γ-rays and correlate well with percentage of apoptotic cells was analyzed using flow cytometric Annexin-V/7-AAD assay. Further investigations showed that γH2AX pan-staining is formed in the early phases of apoptosis and remains until later stages of apoptotic process. Apoptotic DNA fragmentation as detected with comet assay using FM correlated with the percentage of live and late apoptotic/necrotic cells as analyzed by flow cytometry. Lastly, we successfully tested IFC for detection of γH2AX pan-staining and γH2AX/53BP1 DNA repair foci in lymphocyte of breast cancer patients after radiotherapy, which may be useful for assessing individual radiosensitivity in a clinically relevant cohort of patients.


Assuntos
Histonas , Neoplasias , Reparo do DNA , Sangue Fetal/metabolismo , Citometria de Fluxo , Histonas/metabolismo , Humanos , Linfócitos/metabolismo , Microscopia de Fluorescência , Neoplasias/radioterapia
11.
Antioxidants (Basel) ; 10(3)2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33803739

RESUMO

Preleukemic fusion genes (PFGs) occurring after DNA damage in hematopoietic stem progenitor cells (HSPCs) in utero often represent the initial event in the development of childhood leukemia. While the incidence of PFGs characteristic for acute lymphoblastic leukemia (ALL) was relatively well examined by several research groups and estimated to be 1-5% in umbilical cord blood (UCB) of healthy newborns, PFGs that are relevant to acute myeloid leukemia (AML) were poorly investigated. Therefore, this study is focused on the estimation of the incidence of the most frequent AML PFGs in newborns. For the first time, this study considered the inducibility of AML PFGs in different subsets of UCB HSPCs by low-dose γ-rays and also compared endogenous DNA damage, apoptosis, and reactive oxygen species (ROS) level between UCB samples containing or lacking AML PFGs. We found that: (i) the incidence of AML PFGs in UCB was 3.19% for RUNX1-RUNX1T1, 3.19% for PML-RARα, and 1.17% for KMT2A-MLLT3, (ii) 50 cGy of γ-rays did not induce RUNX1-RUNX1T1, PML-RARα, or KMT2A-MLLT3 PFGs in different subsets of sorted and expanded HSPCs, and (iii) the AML PFG+ samples accumulated the same level of endogenous DNA damage, as measured by the γH2AX/53BP1 focus formation, and also the same ROS level, and apoptosis as compared to PFG- controls. Our study provides critical insights into the prevalence of AML PFGs in UCB of newborns, without the evidence of a specific HSPC population more susceptible for PFG formation after irradiation to low-dose γ-rays or increased amount of ROS, apoptosis and DNA damage.

12.
Toxicol In Vitro ; 73: 105127, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33652125

RESUMO

While hyperthermia (HT) is a promising modality for cancer treatment, the knowledge on mechanisms of its effect on cells is still limited. We have investigated DNA double-strand break (DSB) and apoptosis induced by HT. Umbilical cord blood lymphocytes (UCBL) were subjected to HT at 43 °C. We have treated cells for 1 h (1 h HT), 2 h (2 h HT) and by combined HT and ice treatment (both lasting 1 h). Enumeration of DSB by 53BP1/γH2AX DNA repair focus formation and early apoptosis by γH2AX pan-staining was conducted by automated fluorescent microscopy. Apoptotic stages and viability were assessed by the annexin/propidium iodide (PI) assay using flow cytometry 0, 18, and 42 h post-treatment. HT induced either immediate (2 h HT) or postponed (1 h HT) DNA damage. The levels of 53BP1 and γH2AX foci differed under the same treatment conditions, suggesting that the ratio of co-localized γH2AX/53BP1 foci to all γH2AX and also to all 53BP1 foci could be a valuable marker. The ratio of co-localized foci increased immediately after 2 h HT regardless the way of assessment. For the first time we show, by both annexin/PI and γH2AX pan-staining assay that apoptosis can be induced during or immediately after the 2 h HT treatment. Our results suggest that HT may induce DSB in dependence on treatment duration and post-treatment time due to inhibition of DNA repair pathways and that HT-induced apoptosis might be dependent or associated with DSB formation in human lymphocytes. Assessment of γH2AX pan-staining in lymphocytes affected by HT may represent a valuable marker of HT treatment side effects.


Assuntos
Quebras de DNA de Cadeia Dupla , Sangue Fetal/citologia , Temperatura Alta/efeitos adversos , Linfócitos/efeitos da radiação , Apoptose/efeitos da radiação , Reparo do DNA , Histonas , Humanos , Hipertermia Induzida , Recém-Nascido , Proteína 1 de Ligação à Proteína Supressora de Tumor p53
13.
Environ Pollut ; 267: 115632, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33254645

RESUMO

Different scientific reports suggested link between exposure to radiofrequency radiation (RF) from mobile communications and induction of reactive oxygen species (ROS) and DNA damage while other studies have not found such a link. However, the available studies are not directly comparable because they were performed at different parameters of exposure, including carrier frequency of RF signal, which was shown to be a critical for appearance of the RF effects. For the first time, we comparatively analyzed genotoxic effects of UMTS signals at different frequency channels used by 3G mobile phones (1923, 1947.47, and 1977 MHz). Genotoxicity was examined in human lymphocytes exposed to RF for 1 h and 3 h using complimentary endpoints such as induction of ROS by imaging flow cytometry, DNA damage by alkaline comet assay, mutations in TP53 gene by RSM assay, preleukemic fusion genes (PFG) by RT-qPCR, and apoptosis by flow cytometry. No effects of RF exposure on ROS, apoptosis, PFG, and mutations in TP53 gene were revealed regardless the UMTS frequency while inhibition of a bulk RNA expression was found. On the other hand, we found relatively small but statistically significant induction of DNA damage in dependence on UMTS frequency channel with maximal effect at 1977.0 MHz. Our data support a notion that each specific signal used in mobile communication should be tested in specially designed experiments to rule out that prolonged exposure to RF from mobile communication would induce genotoxic effects and affect the health of human population.


Assuntos
Telefone Celular , Apoptose , DNA , Dano ao DNA , Humanos , Linfócitos , Estresse Oxidativo
15.
Sci Rep ; 10(1): 13722, 2020 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-32839487

RESUMO

There is clear evidence that ionizing radiation (IR) causes leukemia. For many types of leukemia, the preleukemic fusion genes (PFG), as consequences of DNA damage and chromosomal translocations, occur in hematopoietic stem and progenitor cells (HSPC) in utero and could be detected in umbilical cord blood (UCB) of newborns. However, relatively limited information is available about radiation-induced apoptosis, DNA damage and PFG formation in human HSPC. In this study we revealed that CD34+ HSPC compared to lymphocytes: (i) are extremely radio-resistant showing delayed time kinetics of apoptosis, (ii) accumulate lower level of endogenous DNA damage/early apoptotic γH2AX pan-stained cells, (iii) have higher level of radiation-induced 53BP1 and γH2AX/53BP1 co-localized DNA double stranded breaks, and (iv) after low dose of IR may form very low level of BCR-ABL PFG. Within CD34+ HSPC we identified CD34+CD38+ progenitor cells as a highly apoptosis-resistant population, while CD34+CD38- hematopoietic stem/multipotent progenitor cells (HSC/MPP) as a population very sensitive to radiation-induced apoptosis. Our study provides critical insights into how human HSPC respond to IR in the context of DNA damage, apoptosis and PFG.


Assuntos
Quebras de DNA de Cadeia Dupla/efeitos da radiação , Sangue Fetal/efeitos da radiação , Fusão Gênica/efeitos da radiação , Células-Tronco Hematopoéticas/efeitos da radiação , Leucemia/genética , Antígenos CD34/metabolismo , Apoptose/efeitos da radiação , Reparo do DNA/genética , Proteínas de Fusão bcr-abl/genética , Proteínas de Fusão bcr-abl/efeitos da radiação , Fusão Gênica/genética , Histonas/genética , Histonas/metabolismo , Humanos , Recém-Nascido , Linfócitos/efeitos da radiação , Pré-Leucemia/genética , Radiação Ionizante , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo
16.
Genes (Basel) ; 11(1)2020 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-31947954

RESUMO

PURPOSE: Ionizing radiation induced foci (IRIF) known also as DNA repair foci represent most sensitive endpoint for assessing DNA double strand breaks (DSB). IRIF are usually visualized and enumerated with the aid of fluorescence microscopy using antibodies to γH2AX and 53BP1. This study analyzed effect of low dose ionizing radiation on residual IRIF in human lymphocytes to the aim of potential biodosimetry and possible extrapolation of high-dose γH2AX/53BP1 effects to low doses and compared kinetics of DSB and IRIF. We also analyzed whether DNaseI, which is used for reducing of clumps, affects the IRIF level. MATERIALS AND METHODS: The cryopreserved human lymphocytes from umbilical cord blood (UCB) were thawed with/without DNaseI, γ-irradiated at doses of 0, 5, 10, and 50 cGy and γH2AX/53BP1 foci were analyzed 30 min, 2 h, and 22 h post-irradiation using appropriate antibodies. We also analyzed kinetics of DSB using PFGE. RESULTS: No significant difference was observed between data obtained by γH2AX foci evaluation in cells that were irradiated by low doses and data obtained by extrapolation from higher doses. Residual 53BP1 foci induced by low doses significantly outreached the data extrapolated from irradiation by higher doses. 53BP1 foci induced by low dose-radiation remain longer at DSB loci than foci induced by higher doses. There was no significant effect of DNaseI on DNA repair foci. CONCLUSIONS: Primary γH2AX, 53BP1 foci and their co-localization represent valuable markers for biodosimetry of low doses, but their usefulness is limited by short time window. Residual γH2AX and 53BP1 foci are more useful markers for biodosimetry in vitro. Effects of low doses can be extrapolated from high dose using γH2AX residual foci while γH2AX/53BP1 foci are valuable markers for evaluation of initial DSB induced by ionizing radiation. Residual IRIF induced by low doses persist longer time than those induced by higher doses.


Assuntos
Reparo do DNA , Raios gama/efeitos adversos , Linfócitos/metabolismo , Relação Dose-Resposta à Radiação , Histonas/metabolismo , Humanos , Linfócitos/patologia , Microscopia de Fluorescência , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo
17.
Sci Rep ; 9(1): 16182, 2019 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-31700008

RESUMO

Exposure to electromagnetic fields (EMF) has been associated with the increased risk of childhood leukemia, which arises from mutations induced within hematopoietic stem cells often through preleukemic fusion genes (PFG). In this study we investigated whether exposure to microwaves (MW) emitted by mobile phones could induce various biochemical markers of cellular damage including reactive oxygen species (ROS), DNA single and double strand breaks, PFG, and apoptosis in umbilical cord blood (UCB) cells including CD34+ hematopoietic stem/progenitor cells. UCB cells were exposed to MW pulsed signals from GSM900/UMTS test-mobile phone and ROS, apoptosis, DNA damage, and PFG were analyzed using flow cytometry, automated fluorescent microscopy, imaging flow cytometry, comet assay, and RT-qPCR. In general, no persisting difference in DNA damage, PFG and apoptosis between exposed and sham-exposed samples was detected. However, we found increased ROS level after 1 h of UMTS exposure that was not evident 3 h post-exposure. We also found that the level of ROS rise with the higher degree of cellular differentiation. Our data show that UCB cells exposed to pulsed MW developed transient increase in ROS that did not result in sustained DNA damage and apoptosis.


Assuntos
Telefone Celular , Sangue Fetal/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Leucemia/metabolismo , Micro-Ondas/efeitos adversos , Lesões Pré-Cancerosas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Dano ao DNA , Células-Tronco Hematopoéticas/patologia , Humanos , Leucemia/patologia , Lesões Pré-Cancerosas/patologia
18.
BMC Cancer ; 19(1): 188, 2019 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-30819144

RESUMO

BACKGROUND: It has been demonstrated that relatively small variations of the parameters of exposure to extremely low frequency magnetic fields (ELF-MF) can change significantly the outcome of experiments. Hence, either in trying to elucidate if these fields are carcinogenic, or in exploring their possible therapeutic use, it is desirable to screen through as many different exposures as possible. The purpose of this work is to provide a proof of concept of how a recently reported system of coils allows testing different field exposures, in a single experiment. METHODS: Using a novel exposure system, we subjected a glioblastoma cancer cell line (U251) to three different time modulations of an ELF-MF at 60 different combinations of the alternated current (AC) and direct current (DC) components of the field. One of those three time modulations was also tested on another cell line, MDA-MB-231 (breast cancer). After exposure, proliferation was assessed by colorimetric assays. RESULTS: For the U251 cells, a total of 180 different exposures were tested in three different experiments. Depending on exposure modulation and AC field intensity (but, remarkably, not on DC intensity), we found the three possible outcomes: increase (14.3% above control, p < 0.01), decrease (16.6% below control, p < 0.001), and also no-effect on proliferation with respect to control. Only the time modulation that inhibited proliferation of U251 was also tested on MDA-MB-231 cells which, in contrast, showed no alteration of their proliferation on any of the 60 AC/DC field combinations tested. CONCLUSIONS: We demonstrated, for the first time, the use of a novel system of coils for magnetobiology research, which allowed us to find that differences of only a few µT resulted in statistically different results. Not only does our study demonstrate the relevance of the time modulation and the importance of finely sweeping through the AC and DC amplitudes, but also, and most importantly, provides a proof of concept of a system that sensibly reduces the time and costs of screening.


Assuntos
Fenômenos Eletromagnéticos , Ensaios de Triagem em Larga Escala , Campos Magnéticos , Linhagem Celular Tumoral , Proliferação de Células/efeitos da radiação , Ensaios de Triagem em Larga Escala/instrumentação , Ensaios de Triagem em Larga Escala/métodos , Humanos , Estudo de Prova de Conceito
20.
Environ Pollut ; 242(Pt A): 643-658, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30025338

RESUMO

Exposure to low frequency and radiofrequency electromagnetic fields at low intensities poses a significant health hazard that has not been adequately addressed by national and international organizations such as the World Health Organization. There is strong evidence that excessive exposure to mobile phone-frequencies over long periods of time increases the risk of brain cancer both in humans and animals. The mechanism(s) responsible include induction of reactive oxygen species, gene expression alteration and DNA damage through both epigenetic and genetic processes. In vivo and in vitro studies demonstrate adverse effects on male and female reproduction, almost certainly due to generation of reactive oxygen species. There is increasing evidence the exposures can result in neurobehavioral decrements and that some individuals develop a syndrome of "electro-hypersensitivity" or "microwave illness", which is one of several syndromes commonly categorized as "idiopathic environmental intolerance". While the symptoms are non-specific, new biochemical indicators and imaging techniques allow diagnosis that excludes the symptoms as being only psychosomatic. Unfortunately standards set by most national and international bodies are not protective of human health. This is a particular concern in children, given the rapid expansion of use of wireless technologies, the greater susceptibility of the developing nervous system, the hyperconductivity of their brain tissue, the greater penetration of radiofrequency radiation relative to head size and their potential for a longer lifetime exposure.


Assuntos
Campos Eletromagnéticos , Exposição Ambiental/estatística & dados numéricos , Animais , Encéfalo , Neoplasias Encefálicas , Telefone Celular , Criança , Dano ao DNA , Feminino , Humanos , Hipersensibilidade , Internacionalidade , Luz , Micro-Ondas , Espécies Reativas de Oxigênio , Organização Mundial da Saúde
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...