Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 37(14): 4049-4055, 2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33651625

RESUMO

Interactions between water and graphene can be probed on a macroscopic level through wettability by measuring the water contact angle and on a microscopic level through water desorption kinetic studies using surface science methods. The contact angle studies of graphene pinpointed the critical role of sample preparation and measurement conditions in assessing the wettability of graphene. So far, studies of water desorption from graphene under the conditions of ultrahigh vacuum provided superior control over the environment but disregarded the importance of sample preparation. Here, we systematically examined the effect of the morphology of the growth substrate and of the transfer process on the macroscopic and microscopic wettability of graphene. Remarkably, the macroscopic wetting transparency of graphene does not always translate into microscopic wetting transparency, particularly in the case of an atomically defined Cu(111) substrate. Additionally, subtle differences in the type of substrates significantly alter the interactions between graphene and the first monolayer of adsorbed water but have a negligible effect on the apparent macroscopic wettability. This work looks into the correlations between the wetting properties of graphene, both on the macroscopic and microscopic scales, and highlights the importance of sample preparation in understanding the surface chemistry of graphene.

2.
Nat Commun ; 11(1): 898, 2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-32060270

RESUMO

Solid substrates often induce non-uniform strain and doping in graphene monolayer, therefore altering the intrinsic properties of graphene, reducing its charge carrier mobilities and, consequently, the overall electrical performance. Here, we exploit confocal Raman spectroscopy to study graphene directly free-floating on the surface of water, and show that liquid supports relief the preexisting strain, have negligible doping effect and restore the uniformity of the properties throughout the graphene sheet. Such an effect originates from the structural adaptability and flexibility, lesser contamination and weaker intermolecular bonding of liquids compared to solid supports, independently of the chemical nature of the liquid. Moreover, we demonstrate that water provides a platform to study and distinguish chemical defects from substrate-induced defects, in the particular case of hydrogenated graphene. Liquid supports, thus, are advantageous over solid supports for a range of applications, particularly for monitoring changes in the graphene structure upon chemical modification.

3.
Nat Commun ; 9(1): 4185, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30305628

RESUMO

Square millimeters of free-standing graphene do not exist per se because of thermal fluctuations in two-dimensional crystals and their tendency to collapse during the detachment from the substrate. Here we form millimeter-scale freely suspended graphene by injecting an air bubble underneath a graphene monolayer floating at the water-air interface, which allowed us to measure the contact angle on fully free-standing non-contaminated graphene. A captive bubble measurement shows that free-standing clean graphene is hydrophilic with a contact angle of 42° ± 3°. The proposed design provides a simple tool to probe and explore the wettability of two-dimensional materials in free-standing geometries and will expand our perception of two-dimensional materials technologies from microscopic to now millimeter scales.

4.
ACS Cent Sci ; 4(5): 661, 2018 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-29806014

RESUMO

[This corrects the article DOI: 10.1021/acscentsci.6b00236.].

5.
Adv Mater ; 30(6)2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29266470

RESUMO

Establishing contact angles on graphene-on-water has been a long-standing challenge as droplet deposition causes free-floating graphene to rupture. The current work presents ice and hydrogels as substrates mimicking water while offering a stable support for graphene. The lowest water contact angles on graphene ever measured, namely on graphene-on-ice and graphene-on-hydrogel, are recorded. The contact angle measurements of liquids with a range of polarities allow the transparency of graphene toward polar and dispersive interactions to be quantified demonstrating that graphene in water is hydrophilic. These findings are anticipated to shed light on the inconsistencies reported so far on the wetting properties of graphene, and most particularly on their implications toward rationalizing how molecules interact with graphene in water.

6.
ACS Cent Sci ; 2(12): 904-909, 2016 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-28058279

RESUMO

Transfer of large, clean, crack- and fold-free graphene sheets is a critical challenge in the field of graphene-based electronic devices. Polymers, conventionally used for transferring two-dimensional materials, irreversibly adsorb yielding a range of unwanted chemical functions and contaminations on the surface. An oil-water interface represents an ideal support for graphene. Cyclohexane, the oil phase, protects graphene from mechanical deformation and minimizes vibrations of the water surface. Remarkably, cyclohexane solidifies at 7 °C forming a plastic crystal phase molecularly conforming graphene, preventing the use of polymers, and thus drastically limiting contamination. Graphene floating at the cyclohexane/water interface exhibits improved electrical performances allowing for new possibilities of in situ, flexible sensor devices at a water interface.

7.
Chem Soc Rev ; 45(3): 476-93, 2016 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-26612268

RESUMO

Graphene and other two dimensional (2D) materials are currently integrated into nanoscaled devices that may - one day - sequence genomes. The challenge to solve is conceptually straightforward: cut a sheet out of a 2D material and use the edge of the sheet to scan an unfolded biomolecule from head to tail. As the scan proceeds - and because 2D materials are atomically thin - the information provided by the edge might be used to identify different segments - ideally single nucleotides - in the biomolecular strand. So far, the most efficient approach was to drill a nano-sized pore in the sheet and use this pore as a channel to guide and detect individual molecules by measuring the electrochemical ionic current. Nanoscaled gaps between two electrodes in 2D materials recently emerged as powerful alternatives to nanopores. This article reviews the current status and prospects of integrating 2D materials in nanopores, nanogaps and similar devices for single molecule biosensing applications. We discuss the pros and cons, the challenges, and the latest achievements in the field. To achieve high-throughput sequencing with 2D materials, interdisciplinary research is essential.


Assuntos
Grafite/química , Nanoporos , Nucleotídeos/análise , Sequenciamento de Nucleotídeos em Larga Escala , Tamanho da Partícula , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA