Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 8783, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627473

RESUMO

The design and optimization of an electromagnetic wave absorber for far-field wireless power transmission (WPT) is the subject of this research study. The goal of the research is to effectively absorb energy from ambient RF electromagnetic waves without the usage of a ground plane by employing metasurfaces with chiral components.By integrating trioidal moments into the design theory, the objective is to create a metasurface that functions in two frequency bands and produces high-quality resonance. The study also explores the dual non-homogeneity property of structures, polarization tensor coefficients, and the electromagnetic response of non-homogeneous metasurfaces. Based on the relative orientation of induced fields and moments, it delves deeper into the two basic possibilities for dual non-homogeneous elements. The development of chiral metasurfaces and the notion of electromagnetic chirality and its implications for polarization properties are introduced.

2.
Sci Rep ; 13(1): 6682, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37095159

RESUMO

In this paper, we investigate the electromagnetic response of metasurfaces due to excitation of the toroidal moment. A toroidal curved metasurface analyzad using a novel theoretical solution based on the Fourier analysis to evaluate the localized fields. Analyzing localized near-field interactions are crucial in investigating the excited trapped modes and enables us to optimize the reflection properties of the proposed metasurface. Optimization is accomplished using graphene layer and resulted a hybrid dielectric-graphene structure with near-zero reflection properties.

3.
Sci Rep ; 8(1): 14865, 2018 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-30291290

RESUMO

In this paper, we investigate the possibility of improving efficiency in non-radiative wireless power transfer (WPT) using metasurfaces embedded between two current varying coils and present a complete theoretical analysis of this system. We use a point-dipole approximation to calculate the fields of the coils. Based on this method, we obtain closed-form and analytical expressions which would provide basic insights into the possibility of efficiency improvement with metasurface. In our analysis, we use the equivalent two sided surface impedance model to analyze the metasurface and to show for which equivalent surface impedance the WPT efficiency will be maximized at the design frequency. Then, to validate our theory, we perform a full-wave simulation for analyzing a practical WPT system, including two circular loop antennas at 13.56 MHz. We then design a metasurface composed of single-sided CLSRRs to achieve a magnetic lensing based on the calculated equivalent surface impedance. The analytical results and full-wave simulations indicated non-radiative WPT efficiency improvement due to amplifying the near evanescent field which can be achieved through inserting the proposed metasurface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA