Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEBS J ; 287(3): 515-528, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31386798

RESUMO

PCSK9 is the last member of the proprotein convertases (PCs) family and its gene is mutated in ~ 2% to 3% of individuals with familial hypercholesterolemia (FH). This protein enhances the degradation of the low-density lipoprotein receptor (LDLR) and hence increases the levels of circulating LDL-cholesterol (LDLc). Studies of the underlying mechanism(s) regulating the activity of different mutations in the PCSK9 gene are ongoing as they enhance our understanding of the biology and clinical relevance of PCSK9 and its partners. In an attempt to unravel the regulation of PCSK9 transcription and possibly identify mutation 'hot spot' regions with alterations in CpG methylation, we present for the first time the complete methylome profile of the PCSK9 gene in modern and archaic humanoids. Our data showed that the genomes of modern humans and archaic PCSK9 exhibit a similar methylation pattern. Next, we defined the mechanistic consequences of three PCSK9 natural mutations (PCSK9-R96L, -R105W, and -P174S) and one archaic Denisovan mutation (PCSK9-H449L) using various complementary cellular and in vitro binding assays. Our results showed that the PCSK9-H449L is a loss-of-function (LOF) mutation, likely due to its lower binding affinity to the LDLR. Similarly, PCSK9-R96L and -R105W are LOF mutations, even though they have been identified in FH patients. The PCSK9-R105W mutation leads to a significantly lower autocatalytic processing of proPCSK9. PCSK9-P174S resulted in a LOF in both extracellular and intracellular pathways. In conclusion, our extensive analyses revealed that all studied mutations result in PCSK9 LOF, via various mechanisms, leading to lower levels of LDLc.


Assuntos
Mutação com Perda de Função , Homem de Neandertal/genética , Pró-Proteína Convertase 9/genética , Animais , Sítios de Ligação , Metilação de DNA , Humanos , Pró-Proteína Convertase 9/química , Pró-Proteína Convertase 9/metabolismo , Ligação Proteica , Receptores de LDL/metabolismo
2.
Arterioscler Thromb Vasc Biol ; 39(10): 1996-2013, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31553664

RESUMO

OBJECTIVE: PCSK9 (proprotein convertase subtilisin-kexin 9) enhances the degradation of the LDLR (low-density lipoprotein receptor) in endosomes/lysosomes. This study aimed to determine the sites of PCSK9 phosphorylation at Ser-residues and the consequences of such posttranslational modification on the secretion and activity of PCSK9 on the LDLR. Approach and Results: Fam20C (family with sequence similarity 20, member C) phosphorylates serines in secretory proteins containing the motif S-X-E/phospho-Ser, including the cholesterol-regulating PCSK9. In situ hybridization of Fam20C mRNA during development and in adult mice revealed a wide tissue distribution, including liver, but not small intestine. Here, we show that Fam20C phosphorylates PCSK9 at Serines 47, 666, 668, and 688. In hepatocytes, phosphorylation enhances PCSK9 secretion and maximizes its induced degradation of the LDLR via the extracellular and intracellular pathways. Replacing any of the 4 Ser by the phosphomimetic Glu or Asp enhanced PCSK9 activity only when the other sites are phosphorylated, whereas Ala substitutions reduced it, as evidenced by Western blotting, Elisa, and LDLR-immunolabeling. This newly uncovered PCSK9/LDLR regulation mechanism refines our understanding of the implication of global PCSK9 phosphorylation in the modulation of LDL-cholesterol and rationalizes the consequence of natural mutations, for example, S668R and E670G. Finally, the relationship of Ser-phosphorylation to the implication of PCSK9 in regulating LDL-cholesterol in the neurological Fragile X-syndrome disorder was investigated. CONCLUSIONS: Ser-phosphorylation of PCSK9 maximizes both its secretion and activity on the LDLR. Mass spectrometric approaches to measure such modifications were developed and applied to quantify the levels of bioactive PCSK9 in human plasma under normal and pathological conditions.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Proteínas da Matriz Extracelular/genética , Regulação da Expressão Gênica , Hiperlipoproteinemia Tipo II/genética , Pró-Proteína Convertase 9/metabolismo , Receptores de LDL/genética , Animais , Western Blotting , Células Cultivadas , Células Hep G2 , Hepatócitos/metabolismo , Humanos , Hiperlipoproteinemia Tipo II/fisiopatologia , Hibridização In Situ/métodos , Masculino , Camundongos , Camundongos Knockout , Microscopia Confocal , Fosforilação/genética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Receptores de LDL/metabolismo , Sensibilidade e Especificidade
3.
Oncotarget ; 9(14): 11646-11664, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29545927

RESUMO

Cdc42 GTPase-activating protein (CdGAP, also named ARHGAP31) is a negative regulator of the GTPases Rac1 and Cdc42. Associated with the rare developmental disorder Adams-Oliver Syndrome (AOS), CdGAP is critical for embryonic vascular development and VEGF-mediated angiogenesis. Moreover, CdGAP is an essential component in the synergistic interaction between TGFß and ErbB-2 signaling pathways during breast cancer cell migration and invasion, and is a novel E-cadherin transcriptional co-repressor with Zeb2 in breast cancer. CdGAP is highly phosphorylated on serine and threonine residues in response to growth factors and is a substrate of ERK1/2 and GSK-3. Here, we identified Ser1093 and Ser1163 in the C-terminal region of CdGAP, which are phosphorylated by RSK in response to phorbol ester. These phospho-residues create docking sites for binding to 14-3-3 adaptor proteins. The interaction between CdGAP and 14-3-3 proteins inhibits the GAP activity of CdGAP and sequesters CdGAP into the cytoplasm. Consequently, the nucleocytoplasmic shuttling of CdGAP is inhibited and CdGAP-induced cell rounding is abolished. In addition, 14-3-3ß inhibits the ability of CdGAP to repress the E-cadherin promoter and to induce cell migration. Finally, we show that 14-3-3ß is unable to regulate the activity and subcellular localization of the AOS-related mutant proteins lacking these phospho-residues. Altogether, we provide a novel mechanism of regulation of CdGAP activity and localization, which impacts directly on a better understanding of the role of CdGAP as a promoter of breast cancer and in the molecular causes of AOS.

4.
Sci Rep ; 8(1): 1943, 2018 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-29386597

RESUMO

Autosomal dominant hypercholesterolemia (ADH) is characterized by elevated LDL-C levels leading to coronary heart disease. Four genes are implicated in ADH: LDLR, APOB, PCSK9 and APOE. Our aim was to identify new mutations in known genes, or in new genes implicated in ADH. Thirteen French families with ADH were recruited and studied by exome sequencing after exclusion, in their probands, of mutations in the LDLR, PCSK9 and APOE genes and fragments of exons 26 and 29 of APOB gene. We identified in one family a p.Arg50Gln mutation in the APOB gene, which occurs in a region not usually associated with ADH. Segregation and in-silico analysis suggested that this mutation is disease causing in the family. We identified in another family with the p.Ala3396Thr mutation of APOB, one patient with a severe phenotype carrying also a mutation in PCSK9: p.Arg96Cys. This is the first compound heterozygote reported with a mutation in APOB and PCSK9. Functional studies proved that the p.Arg96Cys mutation leads to increased LDL receptor degradation. This work shows that Next-Generation Sequencing (exome, genome or targeted sequencing) are powerful tools to find new mutations and identify compound heterozygotes, which will lead to better diagnosis and treatment of ADH.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Hiperlipoproteinemia Tipo II/genética , Mutação/genética , Apolipoproteínas B/genética , Segregação de Cromossomos/genética , Família , Feminino , Células HEK293 , Heterozigoto , Humanos , Masculino , Linhagem , Pró-Proteína Convertase 9/genética
5.
Atherosclerosis ; 227(2): 297-306, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23422832

RESUMO

OBJECTIVES: The proprotein convertase subtillisin/kexin type 9 (PCSK9) regulates cholesterol metabolism via degradation of low-density lipoprotein receptor (LDLr). Although PCSK9 is abundantly expressed in the intestine, limited data are available on its functions. The present study aims at determining whether PCSK9 plays important roles in cholesterol homeostasis and lipid transport in the gut. METHODS AND RESULTS: Caco-2/15 cells were used allowing the exploration of the PCSK9 secretory route through the apical and basolateral compartments corresponding to intestinal lumen and serosal circulation, respectively. The output of PCSK9 occurred through the basolateral membrane, a site characterized by the location of LDLr. Co-immunoprecipitation studies indicated an association between PCSK9 and LDLr. Addition of purified recombinant wild type and D374Y gain-of function PCSK9 proteins to the basolateral medium was followed by a decrease in LDLr concomitantly with the accumulation of both forms of PCSK9. Furthermore, the latter caused a significant enhancement in cholesterol uptake also evidenced by a raised protein expression of cholesterol transporters NPC1L1 and CD36 without changes in SR-BI, ABCA1, and ABCG5/G8. Moreover, exogenous PCSK9 altered the activity of HMG-CoA reductase and acylcoenzyme A: cholesterol acyltransferase, and was able to enhance chylomicron secretion by positively modulating lipids and apolipoprotein B-48 biogenesis. Importantly, PCSK9 silencing led to opposite findings, which validate our data on the role of PCSK9 in lipid transport and metabolism. Moreover, PCSK9-mediated changes persisted despite LDLr knockdown. CONCLUSIONS: These findings indicate that, in addition to its effect on LDLr, PCSK9 modulates cholesterol transport and metabolism, as well as production of apo B-containing lipoproteins in intestinal cells.


Assuntos
Colesterol/metabolismo , Regulação Enzimológica da Expressão Gênica , Metabolismo dos Lipídeos , Pró-Proteína Convertases/metabolismo , Receptores de LDL/metabolismo , Serina Endopeptidases/metabolismo , Transporte Biológico , Células CACO-2 , Células Epiteliais/citologia , Células Epiteliais/enzimologia , Células HEK293 , Células Hep G2 , Homeostase , Humanos , Hidroximetilglutaril-CoA Redutases/metabolismo , Intestinos/citologia , Intestinos/enzimologia , Lipoproteínas/metabolismo , Pró-Proteína Convertase 9
6.
FEBS Lett ; 585(6): 847-53, 2011 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-21349274

RESUMO

The small GTPases Rac1 and Cdc42 are key regulators of the cytoskeleton. We have previously identified the endocytic protein Intersectin as a binding partner and regulator of Cdc42 GTPase-activating protein (CdGAP) with activity towards Rac1 and Cdc42. This interaction is mediated through the SH3D domain of Intersectin and the central domain of CdGAP, which does not contain any typical proline-rich domain or known SH3-binding motif. Here, we have characterized the Intersectin-SH3D/CdGAP interaction. We show that Intersectin-SH3D interacts directly with a small region of CdGAP highly enriched in basic residues and comprising a novel conserved xKx(K/R)K motif.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Motivos de Aminoácidos , Proteínas Ativadoras de GTPase/metabolismo , Domínios de Homologia de src , Proteínas Adaptadoras de Transporte Vesicular/genética , Sequência de Aminoácidos , Animais , Western Blotting , Proteínas Ativadoras de GTPase/genética , Células HEK293 , Humanos , Imunoprecipitação , Camundongos , Dados de Sequência Molecular , Mutação , Ligação Proteica , Homologia de Sequência de Aminoácidos
7.
J Pharmacol Exp Ther ; 334(1): 278-84, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20375199

RESUMO

The light exposure of parenteral nutritive solutions generates peroxides such as H(2)O(2) and ascorbylperoxide [2,3-diketo-4-hydoxyperoxyl-5,6-dihydroxyhexanoic acid]. This absence of photoprotection is associated with higher plasma triacylglycerol (TG) concentration in premature infants and oxidative stress and H(2)O(2)-independent hepatic steatosis in animals. We hypothesized that ascorbylperoxide is the active agent leading to high TG. The aim was to investigate the role of ascorbylperoxide in glucose and lipid metabolism in an animal model of neonatal parenteral nutrition. Three-day-old guinea pigs received through a catheter in the jugular solutions containing dextrose plus 0, 90, 225, or 450 microM ascorbylperoxide. After 4 days, blood and liver were sampled and treated for determinations of TG, cholesterol, markers of oxidative stress (redox potential of glutathione and F(2alpha)-isoprostane), and activities and protein levels of acetyl-CoA carboxylase (ACC), glucokinase, and phosphofructokinase (PFK). Ascorbylperoxide concentration was measured in urine on the last day. Data were compared by analysis of variance (p < 0.05). Plasma TG and cholesterol and hepatic PFK activity increased (200% of control), whereas ACC activity decreased (66% of control) in the function of the amount of ascorbylperoxide infused. Both markers of oxidative stress were higher in animals receiving the highest amounts of ascorbylperoxide. The logarithmic relations between urinary ascorbylperoxide and plasma TG (r(2) = 0.69) and hepatic PFK activity (r(2) = 0.26) were positive, whereas they were negative with ACC activity (r(2) = 0.50). In conclusion, ascorbylperoxide contaminating parenteral nutrition stimulates glycolysis, allowing higher availability of substrates for lipid synthesis. The logarithmic relation between urinary ascorbylperoxide and plasma TG suggests a very low efficient concentration.


Assuntos
Ácido Ascórbico/análogos & derivados , Metabolismo dos Lipídeos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Nutrição Parenteral/normas , Peróxidos/efeitos adversos , Acetil-CoA Carboxilase/metabolismo , Animais , Animais Recém-Nascidos , Ácido Ascórbico/efeitos adversos , Ácido Ascórbico/urina , Colesterol/sangue , Colesterol/metabolismo , Glucoquinase/metabolismo , Cobaias , Luz , Fígado/efeitos dos fármacos , Fígado/enzimologia , Fígado/metabolismo , Oxirredução , Peróxidos/urina , Fosfofrutoquinases/metabolismo , Triglicerídeos/sangue , Triglicerídeos/metabolismo , Vitaminas/química , Vitaminas/efeitos da radiação
8.
Biosci Rep ; 29(5): 283-92, 2009 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-18842111

RESUMO

AMPK (AMP-activated protein kinase) has been suggested to be a central player regulating FA (fatty acid) metabolism through its ability to regulate ACC (acetyl-CoA carboxylase) activity. Nevertheless, its involvement in insulin resistance- and TD2 (Type 2 diabetes)-associated dyslipidaemia remains enigmatic. In the present study, we employed the Psammomys obesus gerbil, a well-established model of insulin resistance and TD2, in order to appreciate the contribution of the AMPK/ACC pathway to the abnormal hepatic lipid synthesis and increased lipid accumulation in the liver. Our investigation provided evidence that the development of insulin resistance/diabetic state in P. obesus is accompanied by (i) body weight gain and hyperlipidaemia; (ii) elevations of hepatic ACC-Ser79 phosphorylation and ACC protein levels; (iii) a rise in the gene expression of cytosolic ACC1 concomitant with invariable mitochondrial ACC2; (iv) an increase in hepatic AMPKalpha-Thr172 phosphorylation and protein expression without any modification in the calculated ratio of phospho-AMPKalpha to total AMPKalpha; (v) a stimulation in ACC activity despite increased AMPKalpha phosphorylation and protein expression; and (vi) a trend of increase in mRNA levels of key lipogenic enzymes [SCD-1 (stearoyl-CoA desaturase-1), mGPAT (mitochondrial isoform of glycerol-3-phosphate acyltransferase) and FAS (FA synthase)] and transcription factors [SREBP-1 (sterol-regulatory-element-binding protein-1) and ChREBP (carbohydrate responsive element-binding protein)]. Altogether, our findings suggest that up-regulation of the AMPK pathway seems to be a natural response in order to reduce lipid metabolism abnormalities, thus supporting the role of AMPK as a promising target for the treatment of TD2-associated dyslipidaemia.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Resistência à Insulina/genética , Lipogênese , Transdução de Sinais/genética , Proteínas Quinases Ativadas por AMP/análise , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/isolamento & purificação , Animais , Glicemia/metabolismo , Colesterol/sangue , Diabetes Mellitus Tipo 2/genética , Gerbillinae , Insulina/sangue , Fígado/metabolismo , Masculino , Fosfolipídeos/sangue , RNA Mensageiro/análise , Triglicerídeos/sangue , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...