Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 62(26): 10440-10449, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37338853

RESUMO

The new binary sodium magnesium sulfide was prepared by the mechanochemical synthesis route from Na2S and MgS as starting materials. Na6MgS4 is extremely sensitive and partially decomposes in the presence of oxygen traces. With the use of an excess of MgS in the milling process, the molar ratio of the impurities was successfully decreased from 38% (Na2S + MgO) to 13% MgO. The crystal structure and properties were characterized by X-ray powder diffraction, thermogravimetry/differential thermal analysis, scanning electron microscopy-energy-dispersive X-ray spectroscopy, and electrochemical impedance spectroscopy. The Rietveld refinement confirmed that Na6MgS4 is isostructural to Na6ZnO4. The compound crystallized in the hexagonal system in the non-centro-symmetric space group P63mc (No. 186) with a = 9.0265(1), c = 6.9524(1) Å, V = 490.58(1) Å3, and Z = 2. The structure consisted of a wurtzite-like 3D framework built up of corner-sharing MgS4 and NaS4 tetrahedra, with 3/4 of the tunnels, parallel to the c axis, filled with octahedrally coordinated sodium atoms. The ionic conductivity of the composite material (87% Na6MgS4 + 13% MgO) being low (4.4 × 10-8 S cm-1 with Ea = 0.56 eV), indium-doped samples Na6-x□xMg1-xInxS4 (x = 0.05, 0.1) were prepared by the mechanochemical synthesis route. These samples also contained 13% MgO. Their ionic conductivities of 9.3 × 10-8 S cm-1 (Ea = 0.51 eV) and 2.5 × 10-7 S cm-1 (Ea = 0.49 eV) at 25 °C for x = 0.05 and 0.1, respectively, were higher than the ionic conductivity of the undoped sample.

2.
Molecules ; 27(12)2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35744975

RESUMO

Adsorption of carbon dioxide (CO2), as well as many other kinds of small molecules, is of importance for industrial and sensing applications. Metal-organic framework (MOF)-based adsorbents are spotlighted for such applications. An essential for MOF adsorbent application is a simple and easy fabrication process, preferably from a cheap, sustainable, and environmentally friendly ligand. Herein, we fabricated a novel structural, thermally stable MOF with fluorescence properties, namely Zn [5-oxo-2,3-dihydro-5H-[1,3]-thiazolo [3,2-a]pyridine-3,7-dicarboxylic acid (TPDCA)] • dimethylformamide (DMF) •0.25 H2O (coded as QUF-001 MOF), in solvothermal conditions by using zinc nitrate as a source of metal ion and TPDCA as a ligand easy accessible from citric acid and cysteine. Single crystal X-ray diffraction analysis and microscopic examination revealed the two-dimensional character of the formed MOF. Upon treatment of QUF-001 with organic solvents (such as methanol, isopropanol, chloroform, dimethylformamide, tetrahydrofuran, hexane), interactions were observed and changes in fluorescence maxima as well as in the powder diffraction patterns were noticed, indicating the inclusion and intercalation of the solvents into the interlamellar space of the crystal structure of QUF-001. Furthermore, CO2 and CH4 molecule sorption properties for QUF-001 reached up to 1.6 mmol/g and 8.1 mmol/g, respectively, at 298 K and a pressure of 50 bars.

3.
ACS Omega ; 5(48): 30799-30807, 2020 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-33324789

RESUMO

The new compounds NaMV2(PO4)3 (M = Fe, Co, Ni) were synthesized via a sol-gel synthesis route, and their crystal structures were refined using the Rietveld method from X-ray powder diffraction data. NaCoV2(PO4)3 was also characterized by TGA, cyclic voltammetry, and galvanostatic cycling. The three phases crystallize with the orthorhombic symmetry and the space group Imma. The structures are isotypic to the stuffed α-CrPO4-type structure and contain two vacant sites in which two sodium atoms can be intercalated. When NaCoV2(PO4)3 is cycled at a 1C rate in the voltage ranges of 0.1-3 and 0.7-3 V vs Na+/Na, it delivers specific capacities of 190 and 75 mA h/g, respectively, with an average operation potential of ∼1.4 V. This attests to the electrochemical activity of this compound and indicates that the α-CrPO4-type compounds could be suitable for hosting other guest ions.

4.
ChemSusChem ; 13(18): 5031-5040, 2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-32663377

RESUMO

Excellent structural stability, high operating voltage, and high capacity have made Na3 V2 (PO4 )2 F3 a promising cathode material for sodium-ion batteries. However, high-temperature battery performances and heat generation measurements have not been systematically reported yet. Carbon-coated Na3 V2 (PO4 )2 F3 @MWCNT (multi-walled carbon nanotube) samples are fabricated by a hydrothermal-assisted sol-gel method and the electrochemical performances are evaluated at three different temperatures (25, 45, and 55 °C). The well-crystallized Na3 V2 (PO4 )2 F3 @MWCNT samples exhibit good cycling stability at both low and high temperatures; they deliver an initial discharge capacity of 120-125 mAhg-1 at a 1 C rate with a retention of 53 % capacity after 1,400 cycles with 99 % columbic efficiency. The half-cell delivers a capacity of 100 mAhg-1 even at a high rate of 10 C at room temperature. Furthermore, the Na3 V2 (PO4 )2 F3 @MWCNT samples show good long-term durability; the capacity loss is an average of 0.05 % per cycle at a 1 C rate at 55 °C. Furthermore, ionic diffusivity and charge transfer resistance are evaluated as functions of state of charge, and they explain the high electrochemical performance of the Na3 V2 (PO4 )2 F3 @MWCNT samples. In-situ heat generation measurements reveal reversible results upon cycling owing to the high structural stability of the material. Excellent electrochemical performances are also demonstrated in the full-cell configuration with hard carbon as well as antimony Sb/C anodes.

5.
Sci Rep ; 10(1): 8909, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32483192

RESUMO

We report on the successful synthesis of diammonium magnesium dihydrogendiphosphate (V) dihydrate compound (NH4)2Mg(H2P2O7)2•2H2O using a wet chemical route. Single crystal X-ray diffraction analysis and micro Raman spectroscopy are employed to characterize the compound. We demonstrate, using a multidisciplinary approach, that this compound is ideal for carbon dioxide (CO2) capture in addition to other anthropogenic gasses. We show here -from both an experimental as well as from a density functional theory (DFT) calculations routes- the potential for adopting this compound into domestic air-conditioning units (ACUs). From these experiments, the resistance to bacterial growth is also investigated, which is critical for the adoption of this compound in ACUs. Our  compound exhibits a higher methane (CH4) sorptivity as compared to CO2 at 25 °C and 45 °C under pressures up to 50 bars. Furthermore, DFT electronic structure calculations are used to compute the main structural and electronic properties of the compound, taking into consideration the characteristics of the identified pores as a function of the progressive CO2 vs. CH4 loadings. Finally, the antibacterial assay reveals a strong antibacterial activity against the tested Gram-positive and Gram-negative bacteria, with a large zone of inhibition against the tested E. Coli, S. Aureus and K. Pneumonia.


Assuntos
Antibacterianos/síntese química , Difosfatos/síntese química , Escherichia coli/crescimento & desenvolvimento , Staphylococcus aureus/crescimento & desenvolvimento , Ar Condicionado/instrumentação , Antibacterianos/química , Antibacterianos/farmacologia , Dióxido de Carbono/química , Cristalografia por Raios X , Teoria da Densidade Funcional , Difosfatos/química , Difosfatos/farmacologia , Escherichia coli/efeitos dos fármacos , Ligação de Hidrogênio , Testes de Sensibilidade Microbiana , Modelos Moleculares , Conformação Molecular , Análise Espectral Raman , Staphylococcus aureus/efeitos dos fármacos , Vibração
6.
RSC Adv ; 10(18): 10420-10430, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35492918

RESUMO

The title compounds were prepared via a wet chemistry route and their crystal structures were determined from single crystal X-ray diffraction data. Na2Mn(SO4)2·4H2O crystallizes with a monoclinic symmetry, space group P21/c, with a = 5.5415(2), b = 8.3447(3), c = 11.2281(3) Å, ß = 100.172(1)°, V = 511.05(3) Å3 and Z = 2. Na2Ni(SO4)2·10H2O also crystallizes with a monoclinic symmetry, space group P21/c, with a = 12.5050(8), b = 6.4812(4), c = 10.0210(6) Å, ß = 106.138(2)°, V = 780.17(8) Å3 and Z = 2. Na2Mn(SO4)2·4H2O is a new member of the blödite family of compounds, whereas Na2Ni(SO4)2·10H2O is isostructural with Na2Mg(SO4)2·10H2O. The structure of Na2Mn(SO4)2·4H2O is built up of [Mn(SO4)2(H2O)4]2- building blocks connected through moderate O-H⋯O hydrogen bonds with the sodium atoms occupying the large tunnels along the a axis and the manganese atom lying on an inversion center, whereas the structure of Na2Ni(SO4)2·10H2O is built up of [Ni(H2O)6]2+ and [Na2(SO4)2(H2O)4]2- layers. These layers which are parallel to the (100) plane are interconnected through moderate O-H⋯O hydrogen bonds. The thermal gravimetric- and the powder X-ray diffraction-analyzes showed that only the nickel phase was almost pure. At a temperature above 300 °C, all the water molecules evaporated and a structural phase transition from P21/c-Na2Ni(SO4)2·10H2O to C2/c-Na2Ni(SO4)2 was observed. C2/c-Na2Ni(SO4)2 is thermally more stable than Na2Fe(SO4)2 and therefore it would be suitable as the positive electrode for sodium ion batteries if a stable electrolyte at high voltage is developed.

7.
Acta Crystallogr E Crystallogr Commun ; 73(Pt 9): 1326-1328, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28932466

RESUMO

In the title compound, C12H9NO3, the benzoate and furan rings are almost coplanar, making a dihedral angle of 11.68 (9)°. The twist angle between the -COO group and the benzene ring is only 2.79 (16)°. In the crystal, mol-ecules are linked by C-H⋯O hydrogen bonds, forming chains along [100]. The mol-ecules stack in a herringbone fashion and inversion-related chains are linked by offset π-π inter-actions [inter-centroid distance = 3.931 (1) Å], forming ribbons propagating along the a-axis direction.

8.
Inorg Chem ; 55(9): 4643-9, 2016 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-27054803

RESUMO

The new members of the Ag2-xNaxMn2Fe(VO4)3 (0 ≤ x ≤ 2) solid solution were synthesized by a solid-state reaction route, and their crystal structures were determined from single-crystal X-ray diffraction data. The physical properties were characterized by Mössbauer and electrochemical impedance spectroscopies, galvanostatic cycling, and cyclic voltammetry. These materials crystallize with a monoclinic symmetry (space group C2/c), and the structure is considered to be a new member of the AA'MM'2(XO4)3 alluaudite family. The A, A', M, and X sites are fully occupied by Ag(+)/Na(+), Ag(+)/Na(+), Mn(2+), and V(5+), respectively, whereas a Mn(2+)/Fe(3+) mixture is observed in the M' site. The Mössbauer spectra confirm that iron is trivalent. The impedance measurements indicate that the silver phase is a better conductor than the sodium phase. Furthermore, these phases exhibit ionic conductivities 2 orders of magnitude higher than those of the homologous phosphates. The electrochemical tests prove that Na2Mn2Fe(VO4)3 is active as positive and negative electrodes in sodium-ion batteries.

9.
Dalton Trans ; 43(36): 13630-6, 2014 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-25099939

RESUMO

The new compound HP-Na2Co[PO4]F was synthesized by high pressure solid state reaction and its crystal structure was determined from single crystal X-ray diffraction data. The physical properties of HP-Na2Co[PO4]F were characterized by magnetic susceptibility, specific heat capacity, galvanometric cycling, and electrochemical impedance spectroscopy measurements. HP-Na2Co[PO4]F crystallizes with the space group P63/m, a = 10.5484(15), c = 6.5261(9) Å, V = 628.87(15) Å(3) and Z = 6. The crystal structure consists of infinite chains of edge-sharing CoF2O4 octahedra. The latter are interconnected through the PO4 tetrahedra forming a 3D-Co[PO4]F-framework. The six coordinated sodium atoms are distributed over three crystallographic sites (2b, 6h, and 4f). The structure of HP-[Na11/3Na23/3Na32/3]Co[PO4]F is similar to [Na11/3Na23/3Sr1/3□1/3]Ge[GeO4]O. There is only one difference; Na3 occupies the 4f (1/3, 2/3, 0.0291) atomic position, whereas the Sr occupies the 2c (1/3, 2/3, 1/4) atomic position. The magnetic susceptibility follows a Curie-Weiss behavior above 50 K with Θ = -21 K indicating predominant antiferromagnetic interactions. The specific heat capacity and magnetization measurements show that HP-Na2Co[PO4]F undergoes a three-dimensional magnetic ordering at TN = 11.0(1) K. The ionic conductivity σ, estimated at 350 °C, is 1.5 × 10(-7) S cm(-1). The electrochemical cycling indicates that only one sodium ion could be extracted during the first charge in Na half-cell; however, the re-intercalation was impossible due to a strong distortion of the structure after the first charge to 5.0 V.

10.
Inorg Chem ; 53(1): 365-74, 2014 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-24328324

RESUMO

The title compounds were synthesized by a hydrothermal route from a 1:1 molar ratio of lithium fluoride and transition-metal acetate in an excess of water. The crystal structures were determined using a combination of powder and/or single-crystal X-ray and neutron powder diffraction (NPD) measurements. The magnetic structure and properties of Co(OH)F were characterized by magnetic susceptibility and low-temperature NPD measurements. M(OH)F (M = Fe and Co) crystallizes with structures related to diaspore-type α-AlOOH, with the Pnma space group, Z = 4, a = 10.471(3) Å, b = 3.2059(10) Å, and c = 4.6977(14) Å and a = 10.2753(3) Å, b = 3.11813(7) Å, and c = 4.68437(14) Å for the iron and cobalt phases, respectively. The structures consist of double chains of edge-sharing M(F,O)6 octahedra running along the b axis. These infinite chains share corners and give rise to channels. The protons are located in the channels and form O-H···F bent hydrogen bonds. The magnetic susceptibility indicates an antiferromagnetic ordering at ∼40 K, and the NPD measurements at 3 K show that the ferromagnetic rutile-type chains with spins parallel to the short b axis are antiferromagnetically coupled to each other, similarly to the magnetic structure of goethite α-FeOOH.

11.
Dalton Trans ; 43(5): 2044-51, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24276233

RESUMO

The new compound LiNaMg[PO4]F has been synthesized by a wet chemical reaction route. Its crystal structure was determined from single-crystal X-ray diffraction data. LiNaMg[PO4]F crystallizes with the monoclinic pseudomerohedrally twinned LiNaNi[PO4]F structure, space group P2(1)/c, a = 6.772(4), b = 11.154(6), c = 5.021(3) Å, ß = 90.00(1)° and Z = 4. The structure contains [MgO3F]n chains made up of zigzag edge-sharing MgO4F2 octahedra. These chains are interlinked by PO4 tetrahedra forming 2D-Mg[PO4]F layers. The alkali metal atoms are well ordered in between these layers over two atomic positions. The use of group-subgroup transformation schemes in the Bärnighausen formalism enabled us to determine precise phase transition mechanisms from LiNaNi[PO4]F- to Na2M[PO4]F-type structures (M = Mn-Ni, and Mg) (see video clip 1 and 2). The crystal and magnetic structure and properties of the parent LiNaNi[PO4]F phase were also studied by magnetometry and neutron powder diffraction. Despite the rather long interlayer distance, d(min)(Ni(+2)-Ni(+2)) ~ 6.8 Å, the material develops a long-range magnetic order below 5 K. The magnetic structure can be viewed as antiferromagnetically coupled ferromagnetic layers with moments parallel to the b-axis.

12.
Inorg Chem ; 52(16): 9627-35, 2013 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-23901880

RESUMO

The crystal structure and magnetic properties of the RbMnPO4 zeolite-ABW-type material have been studied by temperature-dependent neutron powder diffraction, low-temperature magnetometry, and heat capacity measurements. RbMnPO4 represents a rare example of a weak ferromagnetic polar material, containing Mn(2+) ions with TN = 4.7 K. The neutron powder diffraction pattern recorded at T = 10 K shows that the compound crystallizes in the chiral and polar monoclinic space group P2(1) (No. 4) with the unit cell parameters: a = 8.94635(9), b = 5.43415(5), and c = 9.10250(8) Å and ß = 90.4209(6)°. A close inspection of the crystal structure of RbMnPO4 shows that this material presents two different types of zigzag chains running along the b axis. This is a unique feature among the zeolite-ABW-type materials exhibiting the P2(1) symmetry. At low temperature, RbMnPO4 exhibits a canted antiferromagnetic structure characterized by the propagation vector k1 = 0, resulting in the magnetic symmetry P2(1)'. The magnetic moments lie mostly along the b axis with the ferromagnetic component being in the ac plane. Due to the geometrical frustration present in this system, an intermediate phase appears within the temperature range 4.7-5.1 K characterized by the propagation vector k2 = (kx, 0, kz) with kx/kz ≈ 2. This ratio is reminiscent of the multiferroic phase of the orthorhombic RMnO3 phases (R = rare earth), suggesting that RbMnPO4 could present some multiferroic properties at low temperature. Our density functional calculations confirm the presence of magnetic frustration, which explains this intermediate incommensurate phase. Taking into account the strongest magnetic interactions, we are able to reproduce the magnetic structure observed experimentally at low temperature.


Assuntos
Manganês/química , Fosfatos/química , Rubídio/química , Zeolitas/química , Campos Magnéticos , Modelos Moleculares
13.
Phys Chem Chem Phys ; 15(31): 13061-9, 2013 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-23817308

RESUMO

The new compound MnF(2-x)(OH)x (x ~ 0.8) was synthesized by a hydrothermal route from a 1 : 1 molar ratio of lithium fluoride and manganese acetate in an excess of water. The crystal structure was determined using the combination of single crystal X-ray and neutron powder diffraction measurements. The magnetic properties of the title compound were characterized by magnetic susceptibility and low-temperature neutron powder diffraction measurements. MnF(2-x)(OH)x (x ~ 0.8) crystallizes with orthorhombic symmetry, space group Pnn2 (no. 34), a = 4.7127(18), b = 5.203(2), c = 3.2439(13) Å, V = 79.54(5) Å(3) and Z = 2. The crystal structure is a distorted rutile-type with [Mn(F,O)4] infinite edge-sharing chains along the c-direction. The protons are located in the channels and form O-HF bent hydrogen bonds. The magnetic susceptibility measurements indicate an antiferromagnetic ordering at ~70 K and the neutron powder diffraction measurements at 3 K show that the ferromagnetic chains with spins parallel to the c-axis are antiferromagnetically coupled to each other, similarly to the magnetic structure of tetragonal rutile-type MnF2 with isoelectronic Mn(2+). MnF(2-x)(OH)x (x ~ 0.8) is expected to be of great interest as a positive electrode for Li cells if the protons could be exchanged for lithium.

14.
Dalton Trans ; 42(19): 7158-66, 2013 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-23525185

RESUMO

The new compounds Mn2(OH)2SO3, Mn2F(OH)SO3, and Mn5(OH)4(H2O)2[SO3]2[SO4] were synthesized using a hydrothermal route and their crystal structures were determined using single crystal X-ray diffraction data. Mn2(OH)2SO3 and Mn2F(OH)SO3 crystallized with the space group Pnma, a = 7.3580(14), b = 10.3429(20), c = 5.7611(11) Å, Z = 4; and a = 7.413(4), b = 10.139(5), c = 5.717(3) Å, Z = 4, respectively, whereas Mn5(OH)4(H2O)2[SO3]2[SO4] crystallized with the space group P2(1)/m, a = 7.6117(7), b = 8.5326(7), c = 10.9273(9) Å, ß = 101.6005(13)°, Z = 2. Mn2(OH)2SO3 and Mn2F(OH)SO3 consist of a 3D-framework of manganese octahedra sharing corners and edges and giving rise to 1D-tunnels along the a axis in which are located the sulfur atoms, whereas Mn5(OH)4(H2O)2[SO3]2[SO4] consists of a 3D-framework of MnO5, MnO6, SO3, and SO4 polyhedra. Mn5(OH)4(H2O)2[SO3]2[SO4] is the first transition metal mixed sulfate-sulfite inorganic compound. Bent and symmetrically bifurcated hydrogen bonds were observed in these materials.

15.
Dalton Trans ; 41(38): 11692-9, 2012 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-22895345

RESUMO

The new compound LiNaFe[PO(4)]F was synthesized by a solid state reaction route, and its crystal structure was determined using neutron powder diffraction data. LiNaFe[PO(4)]F was characterized by (57)Fe Mössbauer spectroscopy, magnetic susceptibility, specific heat capacity, and electrochemical measurements. LiNaFe[PO(4)]F crystallizes with orthorhombic symmetry, space group Pnma, with a = 10.9568(6) Å, b = 6.3959(3) Å, c = 11.4400(7) Å, V = 801.7(1) Å(3) and Z = 8. The structure consists of edge-sharing FeO(4)F(2) octahedra forming FeFO(3) chains running along the b axis. These chains are interlinked by PO(4) tetrahedra forming a three-dimensional framework with the tunnels and the cavities filled by the well-ordered sodium and lithium atoms, respectively. The specific heat and magnetization measurements show that LiNaFe[PO(4)]F undergoes a three-dimensional antiferromagnetic ordering at T(N) = 20 K. The neutron powder diffraction measurements at 3 K show that each FeFO(3) chain along the b-direction is ferromagnetic (FM), while these FM chains are antiferromagnetically coupled along the a and c-directions with a non-collinear spin arrangement. The galvanometric cycling showed that without any optimization, one mole of alkali metal is extractable between 1.0 V and 5.0 V vs. Li(+)/Li with a discharge capacity between 135 and 145 mAh g(-1).

16.
Inorg Chem ; 51(16): 8729-38, 2012 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-22857520

RESUMO

The new compound LiNaCo[PO(4)]F was synthesized by a solid state reaction route, and its crystal structure was determined by single-crystal X-ray diffraction measurements. The magnetic properties of LiNaCo[PO(4)]F were characterized by magnetic susceptibility, specific heat, and neutron powder diffraction measurements and also by density functional calculations. LiNaCo[PO(4)]F crystallizes with orthorhombic symmetry, space group Pnma, with a = 10.9334(6), b = 6.2934(11), c = 11.3556(10) Å, and Z = 8. The structure consists of edge-sharing CoO(4)F(2) octahedra forming CoFO(3) chains running along the b axis. These chains are interlinked by PO(4) tetrahedra forming a three-dimensional framework with the tunnels and the cavities filled by the well-ordered sodium and lithium atoms, respectively. The magnetic susceptibility follows the Curie-Weiss behavior above 60 K with θ = -21 K. The specific heat and magnetization measurements show that LiNaCo[PO(4)]F undergoes a three-dimensional magnetic ordering at T(mag) = 10.2(5) K. The neutron powder diffraction measurements at 3 K show that the spins in each CoFO(3) chain along the b-direction are ferromagnetically coupled, while these FM chains are antiferromagnetically coupled along the a-direction but have a noncollinear arrangement along the c-direction. The noncollinear spin arrangement implies the presence of spin conflict along the c-direction. The observed magnetic structures are well explained by the spin exchange constants determined from density functional calculations.

17.
Dalton Trans ; 41(19): 5838-47, 2012 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-22447292

RESUMO

The new compounds Li(2-x)Na(x)Ni[PO(4)]F (x = 0.7, 1, and 2) have been synthesized by a solid state reaction route. Their crystal structures were determined from single-crystal X-ray diffraction data. Li(1.3)Na(0.7)Ni[PO(4)]F crystallizes with the orthorhombic Li(2)Ni[PO(4)]F structure, space group Pnma, a = 10.7874(3), b = 6.2196(5), c = 11.1780(4) Å and Z = 8, LiNaNi[PO(4)]F crystallizes with a monoclinic pseudomerohedrally twinned structure, space group P2(1)/c, a = 6.772(4), b = 11.154(6), c = 5.021(3) Å, ß = 90° and Z = 4, and Na(2)Ni[PO(4)]F crystallizes with a monoclinic twinned structure, space group P2(1)/c, a = 13.4581(8), b = 5.1991(3), c = 13.6978(16) Å, ß = 120.58(1)° and Z = 8. For x = 0.7 and 1, the structures contain NiFO(3) chains made up of edge-sharing NiO(4)F(2) octahedra, whereas for x = 2 the chains are formed of dimer units (face-sharing octahedra) sharing corners. These chains are interlinked by PO(4) tetrahedra forming a 3D framework for x = 0.7 and different Ni[PO(4)]F layers for x = 1 and 2. A sodium/lithium disorder over three atomic positions is observed in Li(1.3)Na(0.7)Ni[PO(4)]F structure, whereas the alkali metal atoms are well ordered in between the layers in the LiNaNi[PO(4)]F and Na(2)Ni[PO(4)]F structures, which makes both compounds of great interest as potential positive electrodes for sodium cells.

18.
Inorg Chem ; 49(18): 8578-82, 2010 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-20731409

RESUMO

A new ternary manganese vanadate, NaMnVO(4), was synthesized by solid state reaction route, and its crystal structure and magnetic properties were characterized by X-ray diffraction, magnetic susceptibility and specific heat measurements, and by density functional calculations. NaMnVO(4) crystallizes in the maricite-type structure with space group Pnma, a = 9.563(1) A, b = 6.882(1) A, c = 5.316(1) A, and Z = 4. NaMnVO(4) contains MnO(4) chains made up of edge-sharing MnO(6) octahedra, and these chains are interlinked by VO(4) tetrahedra. The magnetic susceptibility has a broad maximum at T(max) = 24 K and follows the Curie-Weiss behavior above 70 K with θ = -62 K. NaMnVO(4) undergoes a three-dimensional antiferromagnetic ordering at T(N) = 11.8 K. The spin exchanges of NaMnVO(4) are dominated by the intrachain antiferromagnetic exchange, and the interchain spin exchanges are spin-frustrated. The most probable magnetic structure of the ordered magnetic state below T(N) was predicted on the basis of the extracted spin exchanges.

19.
Inorg Chem ; 45(14): 5501-9, 2006 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-16813413

RESUMO

The crystal structure of the low-temperature form of AgCuPO4 (i.e., alpha-AgCuPO4) was determined by powder X-ray diffraction and was compared with that of the high-temperature form of AgCuPO4 (i.e., beta-AgCuPO4). The magnetic properties of the two forms were examined by measuring their magnetic susceptibilities and evaluating the relative strengths of their spin-exchange interactions on the basis of spin-dimer analysis. Both forms of AgCuPO4 have layers of Cu2P2O8 alternating with silver-atom double layers; beta-AgCuPO4 has two Cu2P2O8 layers per unit cell, while alpha-AgCuPO4 has one. The coordinate environment of each Cu2+ ion is close to being a distorted square pyramid in alpha-AgCuPO4, but it is close to being a distorted trigonal bipyramid in beta-AgCuPO4. The magnetic susceptibilities of alpha- and beta-AgCuPO4 are well simulated by an antiferromagnetic alternating-chain model, which leads to J/k(B) = -146.1 K and alphaJ/k(B) = -75.8 K for alpha-AgCuPO4, and J/k(B) = -82.6 K and alphaJ/k(B) = -31.7 K for beta-AgCuPO4 (with the convention in which the spin-exchange parameter between two adjacent spin sites is written as 2J). The spin gaps, delta/k(B), obtained from these parameters are 93.7 K for alpha-AgCuPO4 and 62.3 K for beta-AgCuPO4. The strongest spin exchange in both forms of AgCuPO4 comes from a super-superexchange path, and this interaction is stronger for alpha-AgCuPO4 than for beta-AgCuPO4 by a factor of approximately 2, in good agreement with the experiment. Our analysis supports the use of this model for beta-AgCuPO4 and indicates that the spin lattice of alpha-AgCuPO4 would be better described by a two-dimensional net made up of weakly interacting alternating chains.

20.
Acta Crystallogr C ; 61(Pt 7): i79-80, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15997052

RESUMO

Single crystals of sodium tetracalcium trivanadium dodecaoxide were prepared by melting a powder sample of NaCa4(VO4)3 at 1673 K, followed by slow cooling to room temperature. The compound crystallizes in the Pnma space group and is isostructural with the mineral silicocarnotite, Ca5(PO4)2SiO4. The structure is composed of isolated VO4 tetrahedra linked by sodium and calcium cations disordered over eight- and seven-coordinated sites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...