Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Orig Life Evol Biosph ; 31(1-2): 119-45, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-11296516

RESUMO

The continuity of abiotically formed bilayer membranes with similar structures in contemporary cellular life, and the requirement for microenvironments in which large and small molecules could be compartmentalized, support the idea that amphiphilic boundary structures contributed to the emergence of life. As an extension of this notion, we propose here a 'Lipid World' scenario as an early evolutionary step in the emergence of cellular life on Earth. This concept combines the potential chemical activities of lipids and other amphiphiles, with their capacity to undergo spontaneous self-organization into supramolecular structures such as micelles and bilayers. In particular, the documented chemical rate enhancements within lipid assemblies suggest that energy-dependent synthetic reactions could lead to the growth and increased abundance of certain amphiphilic assemblies. We further propose that selective processes might act on such assemblies, as suggested by our computer simulations of mutual catalysis among amphiphiles. As demonstrated also by other researchers, such mutual catalysis within random molecular assemblies could have led to a primordial homeostatic system displaying rudimentary life-like properties. Taken together, these concepts provide a theoretical framework, and suggest experimental tests for a Lipid World model for the origin of life.


Assuntos
Evolução Química , Lipídeos , Origem da Vida , Catálise , Células , Simulação por Computador , Lipase/química , Membranas
2.
Proc Natl Acad Sci U S A ; 97(8): 4112-7, 2000 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-10760281

RESUMO

Mutually catalytic sets of simple organic molecules have been suggested to be capable of self-replication and rudimentary chemical evolution. Previous models for the behavior of such sets have analyzed the global properties of short biopolymer ensembles by using graph theory and a mean field approach. In parallel, experimental studies with the autocatalytic formation of amphiphilic assemblies (e.g., lipid vesicles or micelles) demonstrated self-replication properties resembling those of living cells. Combining these approaches, we analyze here the kinetic behavior of small heterogeneous assemblies of spontaneously aggregating molecules, of the type that could form readily under prebiotic conditions. A statistical formalism for mutual rate enhancement is used to numerically simulate the detailed chemical kinetics within such assemblies. We demonstrate that a straightforward set of assumptions about kinetically enhanced recruitment of simple amphiphilic molecules, as well as about the spontaneous growth and splitting of assemblies, results in a complex population behavior. The assemblies manifest a significant degree of homeostasis, resembling the previously predicted quasi-stationary states of biopolymer ensembles (Dyson, F. J. (1982) J. Mol. Evol. 18, 344-350). Such emergent catalysis-driven, compositionally biased entities may be viewed as having rudimentary "compositional genomes." Our analysis addresses the question of how mutually catalytic metabolic networks, devoid of sequence-based biopolymers, could exhibit transfer of chemical information and might undergo selection and evolution. This computed behavior may constitute a demonstration of natural selection in populations of molecules without genetic apparatus, suggesting a pathway from random molecular assemblies to a minimal protocell.


Assuntos
Genoma , Catálise , Cinética , Modelos Genéticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...