Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 159(9)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37668253

RESUMO

We present an investigation of the relaxation dynamics of deuterated water molecules after direct photo-double ionization at 61 eV. We focus on the very rare D+ + O+ + D reaction channel in which the sequential fragmentation mechanisms were found to dominate the dynamics. Aided by theory, the state-selective formation and breakup of the transient OD+(a1Δ, b1Σ+) is traced, and the most likely dissociation path-OD+: a1Δ or b1Σ+ → A 3Π â†’ X 3Σ- → B 3Σ--involving a combination of spin-orbit and non-adiabatic charge transfer transitions is determined. The multi-step transition probability of this complex transition sequence in the intermediate fragment ion is directly evaluated as a function of the energy of the transient OD+ above its lowest dissociation limit from the measured ratio of the D+ + O+ + D and competing D+ + D+ + O sequential fragmentation channels, which are measured simultaneously. Our coupled-channel time-dependent dynamics calculations reproduce the general trends of these multi-state relative transition rates toward the three-body fragmentation channels.

2.
Phys Chem Chem Phys ; 25(32): 21562-21572, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37545426

RESUMO

We present the relaxation dynamics of deuterated water molecules via autoionization, initiated by the absorption of a 61 eV photon, producing the very rare D+ + O+ + D breakup channel. We employ the COLd target recoil ion momentum spectroscopy method to measure the 3D momenta of the ionic fragments and emitted electrons from the dissociating molecule in coincidence. We interpret the results using the potential energy surfaces extracted from multi-reference configuration interaction calculations. The measured particle energy distributions can be related to a super-excited monocationic state located above the double ionization threshold of D2O. The autoionized electron energy shows a sharp distribution centered around 0.5 eV, which is a signature of the atomic oxygen autoionization occurring in the direct and sequential dissociation processes of D2O+* at a large internuclear distance. In this way, an O+ radical fragment and a low-energy electron are created, both of which can trigger secondary reactions in their environment.

3.
Chem Sci ; 13(6): 1789-1800, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35282626

RESUMO

We investigate interatomic Coulombic decay in NeKr dimers after neon inner-valence photoionization [Ne+(2s-1)] using a synchrotron light source. We measure with high energy resolution the two singly charged ions of the Coulomb-exploding dimer dication and the photoelectron in coincidence. By carefully tracing the post-collision interaction between the photoelectron and the emitted ICD electron we are able to probe the temporal evolution of the state as it decays. Although the ionizing light pulses are 80 picoseconds long, we determine the lifetime of the intermediate dimer cation state and visualize the contraction of the nuclear structure on the femtosecond time scale.

4.
J Chem Phys ; 152(5): 054302, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-32035476

RESUMO

Using the CD3OH isotopologue of methanol, the ratio of D2H+ to D3 + formation is manipulated by changing the characteristics of the intense femtosecond laser pulse. Detection of D2H+ indicates a formation process involving two hydrogen atoms from the methyl side of the molecule and a proton from the hydroxyl side, while detection of D3 + indicates local formation involving only the methyl group. Both mechanisms are thought to involve a neutral D2 moiety. An adaptive control strategy that employs image-based feedback to guide the learning algorithm results in an enhancement of the D2H+/D3 + ratio by a factor of approximately two. The optimized pulses have secondary structures 110-210 fs after the main pulse and result in photofragments that have different kinetic energy release distributions than those produced from near transform limited pulses. Systematic changes to the linear chirp and higher order dispersion terms of the laser pulse are compared to the results obtained with the optimized pulse shapes.

5.
J Chem Phys ; 151(12): 124310, 2019 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-31575177

RESUMO

An adaptive closed-loop system employing coincidence time-of-flight feedback is used to determine the optimal pulse shapes for manipulating the branching ratio of NO dications following double ionization by an intense laser pulse. Selection between the long-lived NO2+ and the dissociative N+ + O+ final states requires control of the vibrational population distribution in the transient NO2+. The ability to both suppress and enhance NO2+ relative to N+ + O+ is observed, with the effectiveness of shaped pulses surpassing near Fourier transform-limited pulses by about an order of magnitude in each direction, depending on the pulse energy. The control is subsequently investigated using velocity map imaging, identifying plausible dissociation pathways leading to N+ + O+. Combining the information about the N+ + O+ dissociation with a well-defined control objective supports the conclusion that the primary control mechanism involves selectively populating long-lived NO2+ vibrational states.

6.
J Phys Chem Lett ; 10(10): 2320-2327, 2019 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-31002520

RESUMO

We have investigated the femtosecond laser-induced fragmentation of C2H2 q ion beam targets in various initial configurations, including acetylene (linear HCCH), vinylidene (H2CC), and cis/ trans. The initial configuration is shown to have a tremendous impact on the branching ratio of acetylene-like (CH q1 + CH q2) and vinylidene-like (C q1' + CH2 q2') dissociation of a specific C2H2 q molecular ion. In particular, whereas C2H2+ generated from C2H2, a linear HCCH target, exhibits comparable levels of acetylene-like and vinylidene-like fragmentation, vinylidene or cis/ trans configuration ion beams preferably undergo vinylidene-like fragmentation, with an acetylene branching ratio ranging from 13.9% to zero.

7.
Phys Chem Chem Phys ; 21(26): 14090-14102, 2019 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-30688948

RESUMO

We report the results of a time-resolved coincident ion momentum imaging experiment probing nuclear wave packet dynamics in the strong-field ionization and dissociation of iodomethane (CH3I), a prototypical polyatomic system for photochemistry and ultrafast laser science. By measuring yields, kinetic energies, and angular distributions of CH3+ + I+ and CH3+ + I++ ion pairs as a function of the delay between two 25 fs, 790 nm pump and probe pulses, we map both, bound and dissociating nuclear wave packets in intermediate cationic states, thereby tracking different ionization and dissociation pathways. In both channels, we find oscillatory features with a 130 fs periodicity resulting from vibrational motion (C-I symmetric stretch mode) in the first electronically excited state of CH3I+. This vibrational wave packet dephases within 1 ps, in good agreement with a simple wave packet propagation model. Our results indicate that the first excited cationic state plays a key role in the dissociative ionization of CH3I and that it represents an important intermediate in the sequential double and multiple ionization at moderate intensities.

8.
Phys Chem Chem Phys ; 20(32): 21075-21084, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-30074041

RESUMO

We present a combined experimental and theoretical investigation of the electron dynamics and body-frame angular dependence of valence photo-single ionization of CF4 and subsequent dissociation into CF3+ and F. Ionization from a valence t2 orbital shows overlapping shape resonances close to threshold that couple to the same total symmetry, leading to striking changes in the photoelectron angular distributions when viewed in the body-frame.

9.
Phys Rev Lett ; 120(10): 103001, 2018 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-29570318

RESUMO

A key question concerning the three-body fragmentation of polyatomic molecules is the distinction of sequential and concerted mechanisms, i.e., the stepwise or simultaneous cleavage of bonds. Using laser-driven fragmentation of OCS into O^{+}+C^{+}+S^{+} and employing coincidence momentum imaging, we demonstrate a novel method that enables the clear separation of sequential and concerted breakup. The separation is accomplished by analyzing the three-body fragmentation in the native frame associated with each step and taking advantage of the rotation of the intermediate molecular fragment, CO^{2+} or CS^{2+}, before its unimolecular dissociation. This native-frame method works for any projectile (electrons, ions, or photons), provides details on each step of the sequential breakup, and enables the retrieval of the relevant spectra for sequential and concerted breakup separately. Specifically, this allows the determination of the branching ratio of all these processes in OCS^{3+} breakup. Moreover, we find that the first step of sequential breakup is tightly aligned along the laser polarization and identify the likely electronic states of the intermediate dication that undergo unimolecular dissociation in the second step. Finally, the separated concerted breakup spectra show clearly that the central carbon atom is preferentially ejected perpendicular to the laser field.

10.
Sci Rep ; 7(1): 4441, 2017 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-28667335

RESUMO

Much of our intuition about strong-field processes is built upon studies of diatomic molecules, which typically have electronic states that are relatively well separated in energy. In polyatomic molecules, however, the electronic states are closer together, leading to more complex interactions. A combined experimental and theoretical investigation of strong-field ionization followed by hydrogen elimination in the hydrocarbon series C2D2, C2D4 and C2D6 reveals that the photofragment angular distributions can only be understood when the field-dressed orbitals rather than the field-free orbitals are considered. Our measured angular distributions and intensity dependence show that these field-dressed orbitals can have strong Rydberg character for certain orientations of the molecule relative to the laser polarization and that they may contribute significantly to the hydrogen elimination dissociative ionization yield. These findings suggest that Rydberg contributions to field-dressed orbitals should be routinely considered when studying polyatomic molecules in intense laser fields.

11.
J Phys Chem Lett ; 7(22): 4677-4682, 2016 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-27934203

RESUMO

The transition between two distinct ionization mechanisms in femtosecond laser fields at 785 nm is observed for C60 molecules. The transition occurs in the investigated intensity range from 3 to 20 TW/cm2 and is visualized in electron kinetic energy spectra below the one-photon energy (1.5 eV) obtained via velocity map imaging. Assignment of several observed broad spectral peaks to ionization from superatom molecular orbitals (SAMOs) and Rydberg states is based on time-dependent density functional theory simulations. We find that ionization from SAMOs dominates the spectra for intensities below 5 TW/cm2. As the intensity increases, Rydberg state ionization exceeds the prominence of SAMOs. Using short laser pulses (20 fs) allowed uncovering of distinct six-lobe photoelectron angular distributions with kinetic energies just above the threshold (below 0.2 eV), which we interpret as over-the-barrier ionization of shallow f-Rydberg states in C60.

12.
Phys Rev Lett ; 116(19): 193001, 2016 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-27232019

RESUMO

Proton migration is a ubiquitous process in chemical reactions related to biology, combustion, and catalysis. Thus, the ability to manipulate the movement of nuclei with tailored light within a hydrocarbon molecule holds promise for far-reaching applications. Here, we demonstrate the steering of hydrogen migration in simple hydrocarbons, namely, acetylene and allene, using waveform-controlled, few-cycle laser pulses. The rearrangement dynamics is monitored using coincident 3D momentum imaging spectroscopy and described with a widely applicable quantum-dynamical model. Our observations reveal that the underlying control mechanism is due to the manipulation of the phases in a vibrational wave packet by the intense off-resonant laser field.

13.
Rev Sci Instrum ; 86(4): 046103, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25933901

RESUMO

We present a method for determining the detection efficiency of neutral atoms relative to keV ions. Excited D* atoms are produced by D2 fragmentation in a strong laser field. The fragments are detected by a micro-channel plate detector either directly as neutrals or as keV ions following field ionization and acceleration by a static electric field. Moreover, we propose a new mechanism by which neutrals are detected. We show that the ratio of the yield of neutrals and ions can be related to the relative detection efficiency of these species.

14.
Phys Rev Lett ; 114(12): 123004, 2015 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-25860740

RESUMO

Strong laser fields can be used to trigger an ultrafast molecular response that involves electronic excitation and ionization dynamics. Here, we report on the experimental control of the spatial localization of the electronic excitation in the C_{60} fullerene exerted by an intense few-cycle (4 fs) pulse at 720 nm. The control is achieved by tailoring the carrier-envelope phase and the polarization of the laser pulse. We find that the maxima and minima of the photoemission-asymmetry parameter along the laser-polarization axis are synchronized with the localization of the coherent electronic wave packet at around the time of ionization.

15.
Rev Sci Instrum ; 86(1): 016111, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25638138

RESUMO

Using an ultrafast laser and a precision mask, we demonstrate that time signals picked off directly from a microchannel plate detector depend on the position of the hit. This causes a time spread of about 280 ps, which can affect the quality of imaging measurements using large detectors.

16.
Rev Sci Instrum ; 85(11): 113105, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25430096

RESUMO

We report techniques developed to utilize three-dimensional momentum information as feedback in adaptive femtosecond control of molecular dynamics. Velocity map imaging is used to obtain the three-dimensional momentum map of the dissociating ions following interaction with a shaped intense ultrafast laser pulse. In order to recover robust feedback information, however, the two-dimensional momentum projection from the detector must be inverted to reconstruct the full three-dimensional momentum of the photofragments. These methods are typically slow or require manual inputs and are therefore accomplished offline after the images have been obtained. Using an algorithm based upon an "onion-peeling" (also known as "back projection") method, we are able to invert 1040 × 1054 pixel images in under 1 s. This rapid inversion allows the full photofragment momentum to be used as feedback in a closed-loop adaptive control scheme, in which a genetic algorithm tailors an ultrafast laser pulse to optimize a specific outcome. Examples of three-dimensional velocity map image based control applied to strong-field dissociation of CO and O2 are presented.

17.
Nat Commun ; 5: 3800, 2014 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-24806279

RESUMO

Subfemtosecond control of the breaking and making of chemical bonds in polyatomic molecules is poised to open new pathways for the laser-driven synthesis of chemical products. The break-up of the C-H bond in hydrocarbons is an ubiquitous process during laser-induced dissociation. While the yield of the deprotonation of hydrocarbons has been successfully manipulated in recent studies, full control of the reaction would also require a directional control (that is, which C-H bond is broken). Here, we demonstrate steering of deprotonation from symmetric acetylene molecules on subfemtosecond timescales before the break-up of the molecular dication. On the basis of quantum mechanical calculations, the experimental results are interpreted in terms of a novel subfemtosecond control mechanism involving non-resonant excitation and superposition of vibrational degrees of freedom. This mechanism permits control over the directionality of chemical reactions via vibrational excitation on timescales defined by the subcycle evolution of the laser waveform.

18.
Nat Commun ; 4: 2895, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24309433

RESUMO

Shaping ultrafast laser pulses using adaptive feedback can manipulate dynamics in molecular systems, but extracting information from the optimized pulse remains difficult. Experimental time constraints often limit feedback to a single observable, complicating efforts to decipher the underlying mechanisms and parameterize the search process. Here we show, using two strong-field examples, that by rapidly inverting velocity map images of ions to recover the three-dimensional photofragment momentum distribution and incorporating that feedback into the control loop, the specificity of the control objective is markedly increased. First, the complex angular distribution of fragment ions from the nω+C2D4→C2D3++D interaction is manipulated. Second, isomerization of acetylene (nω+C2H2→C2H2(2+)→CH2++C+) is controlled via a barrier-suppression mechanism, a result that is validated by model calculations. Collectively, these experiments comprise a significant advance towards the fundamental goal of actively guiding population to a specified quantum state of a molecule.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Lasers , Modelos Químicos , Acetileno/química , Desenho de Equipamento , Etilenos/química , Processamento de Imagem Assistida por Computador/instrumentação , Íons/análise , Reprodutibilidade dos Testes
19.
Phys Rev Lett ; 111(16): 163004, 2013 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-24182264

RESUMO

The dissociation of an H2+ molecular-ion beam by linearly polarized, carrier-envelope-phase-tagged 5 fs pulses at 4×10(14) W/cm2 with a central wavelength of 730 nm was studied using a coincidence 3D momentum imaging technique. Carrier-envelope-phase-dependent asymmetries in the emission direction of H+ fragments relative to the laser polarization were observed. These asymmetries are caused by interference of odd and even photon number pathways, where net zero-photon and one-photon interference predominantly contributes at H+ + H kinetic energy releases of 0.2-0.45 eV, and net two-photon and one-photon interference contributes at 1.65-1.9 eV. These measurements of the benchmark H2+ molecule offer the distinct advantage that they can be quantitatively compared with ab initio theory to confirm our understanding of strong-field coherent control via the carrier-envelope phase.

20.
Opt Express ; 21(14): 16914-27, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23938540

RESUMO

In this work we propose a novel procedure for the characterization of attosecond pulses. The method relies on the conversion of the attosecond pulse into electron wave-packets through photoionization of atoms in the presence of a weak IR field. It allows for the unique determination of the spectral phase making up the pulses by accurately taking into account the atomic physics of the photoionization process. The phases are evaluated by optimizing the fit of a perturbation theory calculation to the experimental result. The method has been called iPROOF (improved Phase Retrieval by Omega Oscillation Filtering) as it bears a similarity to the PROOF technique [Chini et al. Opt. Express 18, 13006 (2010)]. The procedure has been demonstrated for the characterization of an attosecond pulse train composed of odd and even harmonics. We observe a large phase shift between consecutive odd and even harmonics. The resulting attosecond pulse train has a complex structure not resembling a single attosecond pulse once per IR period, which is the case for zero phase. Finally, the retrieval procedure can be applied to the characterization of single attosecond pulses as well.


Assuntos
Luz , Modelos Teóricos , Fotometria/métodos , Espalhamento de Radiação , Processamento de Sinais Assistido por Computador , Simulação por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...