Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Occup Environ Hyg ; 21(8): 564-575, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38913988

RESUMO

Activated carbon filters are used for the removal of hazardous gases from the air. This research applied vibrational spectroscopy methods, including Fourier-transform infrared spectroscopy and Raman spectroscopy to characterize hydrogen sulfide adsorption on impregnated carbon materials with metals having reactivity toward hydrogen sulfide. The Fourier-transform infrared spectroscopy results demonstrated the formation of a new chemical bond between the impregnating metals and the sulfur, indicated by the appearance of a new band at 618 cm-1. The Raman spectra results showed that for the copper-impregnated activated carbon with the highest hydrogen sulfide adsorption capacity, a new vibrational band at 475 cm-1 evolved, indicating a copper-sulfur bond. In addition, upshifts in the carbon D sub-bands were observed after efficient hydrogen sulfide adsorption, along with a larger area of the approximately 1500 cm-1 band. Therefore, Fourier-transform infrared spectroscopy and Raman spectroscopy combination can potentially indicate H2S adsorption on impregnated activated carbon filters.


Assuntos
Carvão Vegetal , Cobre , Sulfeto de Hidrogênio , Análise Espectral Raman , Sulfeto de Hidrogênio/química , Adsorção , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Análise Espectral Raman/métodos , Carvão Vegetal/química , Cobre/química , Filtração/métodos , Carbono/química
2.
ACS Sens ; 8(4): 1481-1488, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-36960930

RESUMO

Metallo-supramolecular polymers offer a highly controllable platform for sensing. Their modular characteristics obtained by the ability of varying both building blocks, the metal ion and the organic ligand, provide tunability of their optical and chemical properties. Specifically, polymers based on lanthanide ions and conjugated aromatic ligands exhibit enhanced luminescence properties that can be altered by external stimulation. Herein, using europium-based polymers, we demonstrate the ability to detect different pharmaceutical amines, including in complex biological media, based on their luminescence quenching efficiency as a result of their polymer dissociation capacity. A combination of absorption, luminescence, and NMR measurements reveals combined static and dynamic quenching mechanisms that enable selective sensing of strong basic amines with high pKa values.


Assuntos
Aminas , Elementos da Série dos Lantanídeos , Európio/química , Polímeros/química , Preparações Farmacêuticas
3.
Chem Rev ; 123(7): 3790-3851, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36735598

RESUMO

Nanochemistry provides powerful synthetic tools allowing one to combine different materials on a single nanostructure, thus unfolding numerous possibilities to tailor their properties toward diverse functionalities. Herein, we review the progress in the field of semiconductor-metal hybrid nanoparticles (HNPs) focusing on metal-chalcogenides-metal combined systems. The fundamental principles of their synthesis are discussed, leading to a myriad of possible hybrid architectures including Janus zero-dimensional quantum dot-based systems and anisotropic quasi 1D nanorods and quasi-2D platelets. The properties of HNPs are described with particular focus on emergent synergetic characteristics. Of these, the light-induced charge-separation effect across the semiconductor-metal nanojunction is of particular interest as a basis for the utilization of HNPs in photocatalytic applications. The extensive studies on the charge-separation behavior and its dependence on the HNPs structural characteristics, environmental and chemical conditions, and light excitation regime are surveyed. Combining the advanced synthetic control with the charge-separation effect has led to demonstration of various applications of HNPs in different fields. A particular promise lies in their functionality as photocatalysts for a variety of uses, including solar-to-fuel conversion, as a new type of photoinitiator for photopolymerization and 3D printing, and in novel chemical and biomedical uses.

4.
Nano Lett ; 21(3): 1461-1468, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33481610

RESUMO

Recently, it was demonstrated that charge separation in hybrid metal-semiconductor nanoparticles (HNPs) can be obtained following photoexcitation of either the semiconductor or of the localized surface plasmon resonance (LSPR) of the metal. This suggests the intriguing possibility of photocatalytic systems benefiting from both plasmon and exciton excitation, the main challenge being to outcompete other ultrafast relaxation processes. Here we study CdSe-Au HNPs using ultrafast spectroscopy with high temporal resolution. We describe the complete pathways of electron transfer for both semiconductor and LSPR excitation. In the former, we distinguish hot and band gap electron transfer processes in the first few hundred fs. Excitation of the LSPR reveals an ultrafast (<30 fs) electron transfer to CdSe, followed by back-transfer from the semiconductor to the metal within 210 fs. This study establishes the requirements for utilization of the combined excitonic-plasmonic contribution in HNPs for diverse photocatalytic applications.

5.
Nano Lett ; 18(8): 5211-5216, 2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-29985622

RESUMO

Hybrid semiconductor-metal nanoparticles (HNPs) manifest unique, synergistic electronic and optical properties as a result of combining semiconductor and metal physics via a controlled interface. These structures can exhibit spatial charge separation across the semiconductor-metal junction upon light absorption, enabling their use as photocatalysts. The combination of the photocatalytic activity of the metal domain with the ability to generate and accommodate multiple excitons in the semiconducting domain can lead to improved photocatalytic performance because injecting multiple charge carriers into the active catalytic sites can increase the quantum yield. Herein, we show a significant metal domain size dependence of the charge carrier dynamics as well as the photocatalytic hydrogen generation efficiencies under nonlinear excitation conditions. An understanding of this size dependence allows one to control the charge carrier dynamics following the absorption of light. Using a model hybrid semiconductor-metal CdS-Au nanorod system and combining transient absorption and hydrogen evolution kinetics, we reveal faster and more efficient charge separation and transfer under multiexciton excitation conditions for large metal domains compared to small ones. Theoretical modeling uncovers a competition between the kinetics of Auger recombination and charge separation. A crossover in the dominant process from Auger recombination to charge separation as the metal domain size increases allows for effective multiexciton dissociation and harvesting in large metal domain HNPs. This was also found to lead to relative improvement of their photocatalytic activity under nonlinear excitation conditions.

6.
Adv Mater ; 30(41): e1706697, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29656489

RESUMO

Hybrid semiconductor-metal nanoparticles (HNPs) manifest unique combined and often synergetic properties stemming from the materials combination. These structures exhibit spatial charge separation across the semiconductor-metal junction upon light absorption, enabling their use as photocatalysts. So far, the main impetus of photocatalysis research in HNPs addresses their functionality in solar fuel generation. Recently, it was discovered that HNPs are functional in efficient photocatalytic generation of reactive oxygen species (ROS). This has opened the path for their implementation in diverse biomedical and industrial applications where high spatially temporally resolved ROS formation is essential. Here, the latest studies on the synergistic characteristics of HNPs are summarized, including their optical, electrical, and chemical properties and their photocatalytic function in the field of solar fuel generation is briefly discussed. Recent studies are then focused concerning photocatalytic ROS formation with HNPs under aerobic conditions. The emergent applications of this capacity are then highlighted, including light-induced modulation of enzymatic activity, photodynamic therapy, antifouling, wound healing, and as novel photoinitiators for 3D-printing. The superb photophysical and photocatalytic properties of HNPs offer already clear advantages for their utility in scenarios requiring on-demand light-induced radical formation and the full potential of HNPs in this context is yet to be revealed.


Assuntos
Pontos Quânticos , Animais , Catálise , Humanos , Processos Fotoquímicos , Pontos Quânticos/química
7.
Nano Lett ; 17(7): 4497-4501, 2017 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-28617606

RESUMO

Additive manufacturing processes enable fabrication of complex and functional three-dimensional (3D) objects ranging from engine parts to artificial organs. Photopolymerization, which is the most versatile technology enabling such processes through 3D printing, utilizes photoinitiators that break into radicals upon light absorption. We report on a new family of photoinitiators for 3D printing based on hybrid semiconductor-metal nanoparticles. Unlike conventional photoinitiators that are consumed upon irradiation, these particles form radicals through a photocatalytic process. Light absorption by the semiconductor nanorod is followed by charge separation and electron transfer to the metal tip, enabling redox reactions to form radicals in aerobic conditions. In particular, we demonstrate their use in 3D printing in water, where they simultaneously form hydroxyl radicals for the polymerization and consume dissolved oxygen that is a known inhibitor. We also demonstrate their potential for two-photon polymerization due to their giant two-photon absorption cross section.

8.
Top Curr Chem (Cham) ; 374(4): 54, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27573406

RESUMO

Semiconductor-metal hybrid nanoparticles manifest combined and often synergistic properties exceeding the functionality of the individual components, thereby opening up interesting opportunities for controlling their properties through the direct manipulation of their unique semiconductor-metal interface. Upon light absorption, these structures exhibit spatial charge separation across the semiconductor-metal junction. A significant and challenging application involves the use of these nanoparticles as photocatalysts. Through this process, the charge carriers transferred to the metal co-catalyst are available as reduction or oxidation reagents to drive the surface chemical reactions. In this review, we discuss synthesis approaches that offer a high degree of control over the hybrid nanoparticle structure and composition, the number of catalytic sites and the interfacial characteristics, including examples of a variety of photocatalyst architectures. We describe the structural and surface effects with regard to the functionality of hybrid nanosystems in photocatalysis, along with the effects of solution and chemical conditions on photocatalytic activity and efficiency. We conclude with a perspective on the rational design of advanced semiconductor-metal hybrid nanoparticles towards their functionality as highly efficient photocatalysts.

9.
Nano Lett ; 16(7): 4266-73, 2016 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-27224678

RESUMO

Semiconductor-metal hybrid nanoparticles manifest efficient light-induced spatial charge separation at the semiconductor-metal interface, as demonstrated by their use for hydrogen generation via water splitting. Here, we pioneer a study of their functionality as efficient photocatalysts for the formation of reactive oxygen species. We observed enhanced photocatalytic activity forming hydrogen peroxide, superoxide, and hydroxyl radicals upon light excitation, which was significantly larger than that of the semiconductor nanocrystals, attributed to the charge separation and the catalytic function of the metal tip. We used this photocatalytic functionality for modulating the enzymatic activity of horseradish peroxidase as a model system, demonstrating the potential use of hybrid nanoparticles as active agents for controlling biological processes through illumination. The capability to produce reactive oxygen species by illumination on-demand enhances the available peroxidase-based tools for research and opens the path for studying biological processes at high spatiotemporal resolution, laying the foundation for developing novel therapeutic approaches.


Assuntos
Luz , Nanopartículas Metálicas , Espécies Reativas de Oxigênio/química , Semicondutores , Fenômenos Biológicos , Peroxidase do Rábano Silvestre/química
10.
Nat Commun ; 7: 10413, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26783194

RESUMO

Semiconductor-metal hybrid nanostructures offer a highly controllable platform for light-induced charge separation, with direct relevance for their implementation in photocatalysis. Advances in the synthesis allow for control over the size, shape and morphology, providing tunability of the optical and electronic properties. A critical determining factor of the photocatalytic cycle is the metal domain characteristics and in particular its size, a subject that lacks deep understanding. Here, using a well-defined model system of cadmium sulfide-gold nanorods, we address the effect of the gold tip size on the photocatalytic function, including the charge transfer dynamics and hydrogen production efficiency. A combination of transient absorption, hydrogen evolution kinetics and theoretical modelling reveal a non-monotonic behaviour with size of the gold tip, leading to an optimal metal domain size for the most efficient photocatalysis. We show that this results from the size-dependent interplay of the metal domain charging, the relative band-alignments, and the resulting kinetics.

11.
Small ; 11(4): 462-71, 2015 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-25207751

RESUMO

Hybrid semiconductor-metal nanoparticles are interesting materials for use as photocatalysts due to their tunable properties and chemical processibility. Their function in the evolution of hydrogen in photocatalytic water splitting is the subject of intense current investigation. Here, the effects of the surface coatings on the photocatalytic function are studied, with Au-tipped CdS nanorods as a model hybrid nanoparticle system. Kinetic measurements of the hydrogen evolution rate following photocatalytic water reduction are performed on similar nanoparticles but with different surface coatings, including various types of thiolated alkyl ligands and different polymer coatings. The apparent hydrogen evolution quantum yields are found to strongly depend on the surface coating. The lowest yields are observed for thiolated alkyl ligands. Intermediate values are obtained with L-glutathione and poly(styrene-co-maleic anhydride) polymer coatings. The highest efficiency is obtained for polyethylenimine (PEI) polymer coating. These pronounced differences in the photocatalytic efficiencies are correlated with ultrafast transient absorption spectroscopy measurements, which show a faster bleach recovery for the PEI-coated hybrid nanoparticles, consistent with faster and more efficient charge separation. These differences are primarily attributed to the effects of surface passivation by the different coatings affecting the surface trapping of charge carriers that compete with effective charge separation required for the photocatalysis. Further support of this assignment is provided from steady-state emission and time-resolved spectral measurements, performed on related strongly fluorescing CdSe/CdS nanorods. The control and understanding of the effect of the surface coating of the hybrid nanosystems on the photocatalytic processes is of importance for the potential application of hybrid nanoparticles as photocatalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA