Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Hum Reprod ; 39(4): 698-708, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38396213

RESUMO

STUDY QUESTION: Can the BlastAssist deep learning pipeline perform comparably to or outperform human experts and embryologists at measuring interpretable, clinically relevant features of human embryos in IVF? SUMMARY ANSWER: The BlastAssist pipeline can measure a comprehensive set of interpretable features of human embryos and either outperform or perform comparably to embryologists and human experts in measuring these features. WHAT IS KNOWN ALREADY: Some studies have applied deep learning and developed 'black-box' algorithms to predict embryo viability directly from microscope images and videos but these lack interpretability and generalizability. Other studies have developed deep learning networks to measure individual features of embryos but fail to conduct careful comparisons to embryologists' performance, which are fundamental to demonstrate the network's effectiveness. STUDY DESIGN, SIZE, DURATION: We applied the BlastAssist pipeline to 67 043 973 images (32 939 embryos) recorded in the IVF lab from 2012 to 2017 in Tel Aviv Sourasky Medical Center. We first compared the pipeline measurements of individual images/embryos to manual measurements by human experts for sets of features, including: (i) fertilization status (n = 207 embryos), (ii) cell symmetry (n = 109 embryos), (iii) degree of fragmentation (n = 6664 images), and (iv) developmental timing (n = 21 036 images). We then conducted detailed comparisons between pipeline outputs and annotations made by embryologists during routine treatments for features, including: (i) fertilization status (n = 18 922 embryos), (ii) pronuclei (PN) fade time (n = 13 781 embryos), (iii) degree of fragmentation on Day 2 (n = 11 582 embryos), and (iv) time of blastulation (n = 3266 embryos). In addition, we compared the pipeline outputs to the implantation results of 723 single embryo transfer (SET) cycles, and to the live birth results of 3421 embryos transferred in 1801 cycles. PARTICIPANTS/MATERIALS, SETTING, METHODS: In addition to EmbryoScope™ image data, manual embryo grading and annotations, and electronic health record (EHR) data on treatment outcomes were also included. We integrated the deep learning networks we developed for individual features to construct the BlastAssist pipeline. Pearson's χ2 test was used to evaluate the statistical independence of individual features and implantation success. Bayesian statistics was used to evaluate the association of the probability of an embryo resulting in live birth to BlastAssist inputs. MAIN RESULTS AND THE ROLE OF CHANCE: The BlastAssist pipeline integrates five deep learning networks and measures comprehensive, interpretable, and quantitative features in clinical IVF. The pipeline performs similarly or better than manual measurements. For fertilization status, the network performs with very good parameters of specificity and sensitivity (area under the receiver operating characteristics (AUROC) 0.84-0.94). For symmetry score, the pipeline performs comparably to the human expert at both 2-cell (r = 0.71 ± 0.06) and 4-cell stages (r = 0.77 ± 0.07). For degree of fragmentation, the pipeline (acc = 69.4%) slightly under-performs compared to human experts (acc = 73.8%). For developmental timing, the pipeline (acc = 90.0%) performs similarly to human experts (acc = 91.4%). There is also strong agreement between pipeline outputs and annotations made by embryologists during routine treatments. For fertilization status, the pipeline and embryologists strongly agree (acc = 79.6%), and there is strong correlation between the two measurements (r = 0.683). For degree of fragmentation, the pipeline and embryologists mostly agree (acc = 55.4%), and there is also strong correlation between the two measurements (r = 0.648). For both PN fade time (r = 0.787) and time of blastulation (r = 0.887), there's strong correlation between the pipeline and embryologists. For SET cycles, 2-cell time (P < 0.01) and 2-cell symmetry (P < 0.03) are significantly correlated with implantation success rate, while other features showed correlations with implantation success without statistical significance. In addition, 2-cell time (P < 5 × 10-11), PN fade time (P < 5 × 10-10), degree of fragmentation on Day 3 (P < 5 × 10-4), and 2-cell symmetry (P < 5 × 10-3) showed statistically significant correlation with the probability of the transferred embryo resulting in live birth. LIMITATIONS, REASONS FOR CAUTION: We have not tested the BlastAssist pipeline on data from other clinics or other time-lapse microscopy (TLM) systems. The association study we conducted with live birth results do not take into account confounding variables, which will be necessary to construct an embryo selection algorithm. Randomized controlled trials (RCT) will be necessary to determine whether the pipeline can improve success rates in clinical IVF. WIDER IMPLICATIONS OF THE FINDINGS: BlastAssist provides a comprehensive and holistic means of evaluating human embryos. Instead of using a black-box algorithm, BlastAssist outputs meaningful measurements of embryos that can be interpreted and corroborated by embryologists, which is crucial in clinical decision making. Furthermore, the unprecedentedly large dataset generated by BlastAssist measurements can be used as a powerful resource for further research in human embryology and IVF. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by Harvard Quantitative Biology Initiative, the NSF-Simons Center for Mathematical and Statistical Analysis of Biology at Harvard (award number 1764269), the National Institute of Heath (award number R01HD104969), the Perelson Fund, and the Sagol fund for embryos and stem cells as part of the Sagol Network. The authors declare no competing interests. TRIAL REGISTRATION NUMBER: Not applicable.


Assuntos
Aprendizado Profundo , Gravidez , Feminino , Humanos , Implantação do Embrião , Transferência de Embrião Único/métodos , Blastocisto , Nascido Vivo , Fertilização in vitro , Estudos Retrospectivos
2.
Nat Commun ; 14(1): 6902, 2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-37903791

RESUMO

Human preimplantation development involves extensive remodeling of RNA expression and splicing. However, its transcriptome has been compiled using short-read sequencing data, which fails to capture most full-length mRNAs. Here, we generate an isoform-resolved transcriptome of early human development by performing long- and short-read RNA sequencing on 73 embryos spanning the zygote to blastocyst stages. We identify 110,212 unannotated isoforms transcribed from known genes, including highly conserved protein-coding loci and key developmental regulators. We further identify 17,964 isoforms from 5,239 unannotated genes, which are largely non-coding, primate-specific, and highly associated with transposable elements. These isoforms are widely supported by the integration of published multi-omics datasets, including single-cell 8CLC and blastoid studies. Alternative splicing and gene co-expression network analyses further reveal that embryonic genome activation is associated with splicing disruption and transient upregulation of gene modules. Together, these findings show that the human embryo transcriptome is far more complex than currently known, and will act as a valuable resource to empower future studies exploring development.


Assuntos
Desenvolvimento Embrionário , Transcriptoma , Animais , Humanos , Desenvolvimento Embrionário/genética , Zigoto/metabolismo , Perfilação da Expressão Gênica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Análise de Sequência de RNA , Processamento Alternativo/genética , Blastocisto/metabolismo
3.
Int J Gynaecol Obstet ; 161(3): 997-1003, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36495286

RESUMO

OBJECTIVE: To analyze whether cleavage stage at compaction, and not only kinetics, can serve as a reliable predictor for clinical outcome. METHODS: A retrospective cohort study including 1194 embryos, classified by compaction initiation stage (Group 1: compaction at fewer than eight cells, Group 2: compaction at eight cells, Group 3: compaction at more than eight cells). Of these, 815 embryos were evaluated for morphokinetic preimplantation parameters, and 379 embryos were analyzed for clinical implantation following thawing and transfer of single blastocysts during the same period. RESULTS: In total, 1194 embryos were analyzed. Embryos that underwent compaction from more than eight cells (Group 3) exhibited more synchronous cleavage compared with Groups 1 and 2 (at both S2 and S3; P < 0.001), and displayed a significantly lower fragmentation rate. The likelihood of obtaining top-quality blastocysts decreased by 73% and 44% when comparing Group 3 embryos with those of Groups 1 and 2, respectively, (P < 0.03). Clinical validation of the results shows that while compaction from fewer than eight cells barely produced blastocysts for transfer, compaction at eight or more cells is crucial for implantation and birth (birth rates 11.1% and 18.5% for Groups 2 and 3, respectively). CONCLUSION: Cleavage stage at compaction has a direct effect on blastocyst quality and subsequent pregnancy, so can be included in newly developed deep learning models for embryo selection.


Assuntos
Blastocisto , Implantação do Embrião , Gravidez , Feminino , Humanos , Estudos Retrospectivos , Coeficiente de Natalidade , Fertilização in vitro , Taxa de Gravidez
4.
iScience ; 25(12): 105469, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36404921

RESUMO

A detailed understanding of the developmental substates of human pluripotent stem cells (hPSCs) is needed to optimize their use in cell therapy and for modeling early development. Genetic instability and risk of tumorigenicity of primed hPSCs are well documented, but a systematic isogenic comparison between substates has not been performed. We derived four hESC lines in naive human stem cell medium (NHSM) and generated isogenic pairs of NHSM and primed cultures. Through phenotypic, transcriptomic, and methylation profiling, we identified changes that arose during the transition to a primed substate. Although early NHSM cultures displayed naive characteristics, including greater proliferation and clonogenic potential compared with primed cultures, they drifted toward a more primed-like substate over time, including accumulation of genetic abnormalities. Overall, we show that transcriptomic and epigenomic profiling can be used to place human pluripotent cultures along a developmental continuum and may inform their utility for clinical and research applications.

5.
Int J Mol Sci ; 23(16)2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36012539

RESUMO

Fragile X Syndrome (FXS) is the main genetic reason for intellectual disability and is caused by the silencing of fragile X mental retardation protein (FMRP), an RNA-binding protein regulating the translation of many neuronal mRNAs. Neural differentiation of FX human embryonic stem cells (hESC) mimics the neurodevelopment of FXS fetuses and thus serves as a good model to explore the mechanisms underlining the development of FXS. Isogenic hESC clones with and without the FX mutation that share the same genetic background were in vitro differentiated into neurons, and their transcriptome was analyzed by RNA sequencing. FX neurons inactivating FMR1 expression presented delayed neuronal development and maturation, concomitant with dysregulation of the TGFß/BMP signaling pathway, and genes related to the extracellular matrix. Migration assay showed decreased neurite outgrowth in FX neurons that was rescued by inhibition of the TGFß/BMP signaling pathway. Our results provide new insights into the molecular pathway by which loss of FMRP affects neuronal network development. In FX neurons, the lack of FMRP dysregulates members of the BMP signaling pathway associated with ECM organization which, in a yet unknown mechanism, reduces the guidance of axonal growth cones, probably leading to the aberrant neuronal network function seen in FXS.


Assuntos
Síndrome do Cromossomo X Frágil , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Humanos , Crescimento Neuronal , Neurônios/metabolismo , Transcriptoma , Fator de Crescimento Transformador beta/metabolismo
6.
Mol Cytogenet ; 15(1): 11, 2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35313946

RESUMO

INTRODUCTION: Analyses of miscarriage products indicate that the majority of aneuploidies in early developing embryos derive from errors occurring during maternal meiosis and the paternal contribution is less than 10%. Our aim was to assess the aneuploidy (mainly monosmies) frequencies at the earliest stages of embryo development, 3 days following fertilization during In vitro fertilization (IVF) treatments and to elucidate their parental origin. Later, we compared monosomies rates of day 3 to those of day 5 as demonstrated from Preimplantation Genetic Testing for Structural chromosomal Rearrangement (PGT-SR) results. METHODS: For a retrospective study, we collected data of 210 Preimplantation Genetic Testing for Monogenic Disorder (PGT-M) cycles performed between years 2008 and 2019.This study includes 2083 embryos, of 113 couples. It also included 432 embryos from 90 PGT-SR cycles of other 45 patients, carriers of balanced translocations. Defining the parental origin of aneuploidy in cleavage stage embryos was based on haplotypes analysis of at least six informative markers flanking the analyzed gene. For comprehensive chromosomal screening (CCS), chromosomal microarray (CMA) and next generation sequencing (NGS) was used. RESULTS: We inspected haplotype data of 40 genomic regions, flanking analyzed genes located on 9 different chromosomes.151 (7.2%) embryos presented numerical alterations in the tested chromosomes. We found similar paternal and maternal contribution to monosomy at cleavage stage. We demonstrated paternal origin in 51.5% of the monosomy, and maternal origin in 48.5% of the monosomies cases. CONCLUSION: In our study, we found equal parental contribution to monosomies in cleavage-stage embryos. Comparison to CCS analyses of PGT-SR patients revealed a lower rate of monosomy per chromosome in embryos at day 5 of development. This is in contrast to the maternal dominancy described in studies of early miscarriage. Mitotic errors and paternal involvement in chemical pregnancies and IVF failure should be re-evaluated. Our results show monosomies are relatively common and may play a role in early development of ART embryos.

7.
Int J Mol Sci ; 23(4)2022 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-35216162

RESUMO

Fragile X syndrome (FXS), the most common form of inherited intellectual disability, is caused by a developmentally regulated silencing of the FMR1 gene, but its effect on human neuronal network development and function is not fully understood. Here, we isolated isogenic human embryonic stem cell (hESC) subclones-one with a full FX mutation and one that is free of the mutation (control) but shares the same genetic background-differentiated them into induced neurons (iNs) by forced expression of NEUROG-1, and compared the functional properties of the derived neuronal networks. High-throughput image analysis demonstrates that FX-iNs have significantly smaller cell bodies and reduced arborizations than the control. Both FX- and control-neurons can discharge repetitive action potentials, and FX neuronal networks are also able to generate spontaneous excitatory synaptic currents with slight differences from the control, demonstrating that iNs generate more mature neuronal networks than the previously used protocols. MEA analysis demonstrated that FX networks are hyperexcitable with significantly higher spontaneous burst-firing activity compared to the control. Most importantly, cross-correlation analysis enabled quantification of network connectivity to demonstrate that the FX neuronal networks are significantly less synchronous than the control, which can explain the origin of the development of intellectual dysfunction associated with FXS.


Assuntos
Síndrome do Cromossomo X Frágil/metabolismo , Potenciais da Membrana , Transcriptoma , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Células Cultivadas , Proteína do X Frágil da Deficiência Intelectual/genética , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/fisiologia , Neurogênese , Ratos
8.
Artigo em Inglês | MEDLINE | ID: mdl-34671767

RESUMO

The developmental process of embryos follows a monotonic order. An embryo can progressively cleave from one cell to multiple cells and finally transform to morula and blastocyst. For time-lapse videos of embryos, most existing developmental stage classification methods conduct per-frame predictions using an image frame at each time step. However, classification using only images suffers from overlapping between cells and imbalance between stages. Temporal information can be valuable in addressing this problem by capturing movements between neighboring frames. In this work, we propose a two-stream model for developmental stage classification. Unlike previous methods, our two-stream model accepts both temporal and image information. We develop a linear-chain conditional random field (CRF) on top of neural network features extracted from the temporal and image streams to make use of both modalities. The linear-chain CRF formulation enables tractable training of global sequential models over multiple frames while also making it possible to inject monotonic development order constraints into the learning process explicitly. We demonstrate our algorithm on two time-lapse embryo video datasets: i) mouse and ii) human embryo datasets. Our method achieves 98.1% and 80.6% for mouse and human embryo stage classification, respectively. Our approach will enable more pro-found clinical and biological studies and suggests a new direction for developmental stage classification by utilizing temporal information.

9.
Cell Rep ; 36(8): 109579, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34433056

RESUMO

Ultraviolet (UV) light affects endocrinological and behavioral aspects of sexuality via an unknown mechanism. Here we discover that ultraviolet B (UVB) exposure enhances the levels of sex-steroid hormones and sexual behavior, which are mediated by the skin. In female mice, UVB exposure increases hypothalamus-pituitary-gonadal axis hormone levels, resulting in larger ovaries; extends estrus days; and increases anti-Mullerian hormone (AMH) expression. UVB exposure also enhances the sexual responsiveness and attractiveness of females and male-female interactions. Conditional knockout of p53 specifically in skin keratinocytes abolishes the effects of UVB. Thus, UVB triggers a skin-brain-gonadal axis through skin p53 activation. In humans, solar exposure enhances romantic passion in both genders and aggressiveness in men, as seen in analysis of individual questionaries, and positively correlates with testosterone level. Our findings suggest opportunities for treatment of sex-steroid-related dysfunctions.


Assuntos
Hormônio Antimülleriano/biossíntese , Sistema Hipotálamo-Hipofisário/metabolismo , Ovário/metabolismo , Comportamento Sexual/efeitos da radiação , Pele/metabolismo , Testosterona/biossíntese , Raios Ultravioleta , Animais , Estro/metabolismo , Feminino , Técnicas de Inativação de Genes , Queratinócitos/metabolismo , Masculino , Camundongos
10.
Front Mol Neurosci ; 14: 680018, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34421534

RESUMO

The canonical Wnt/ß-catenin pathway is a master-regulator of cell fate during embryonic and adult neurogenesis and is therefore a major pharmacological target in basic and clinical research. Chemical manipulation of Wnt signaling during in vitro neuronal differentiation of stem cells can alter both the quantity and the quality of the derived neurons. Accordingly, the use of Wnt activators and blockers has become an integral part of differentiation protocols applied to stem cells in recent years. Here, we investigated the effects of the glycogen synthase kinase-3ß inhibitor CHIR99021, which upregulates ß-catenin agonizing Wnt; and the tankyrase-1/2 inhibitor XAV939, which downregulates ß-catenin antagonizing Wnt. Both drugs and their potential neurogenic and anti-neurogenic effects were studied using stable lines human neural precursor cells (hNPCs), derived from embryonic stem cells, which can be induced to generate mature neurons by chemically-defined conditions. We found that Wnt-agonism by CHIR99021 promotes induction of neural differentiation, while also reducing cell proliferation and survival. This effect was not synergistic with those of pro-neural growth factors during long-term neuronal differentiation. Conversely, antagonism of Wnt by XAV939 consistently prevented neuronal progression of hNPCs. We show here how these two drugs can be used to manipulate cell fate and how self-renewing hNPCs can be used as reliable human in vitro drug-screening platforms.

11.
Reprod Sci ; 28(12): 3390-3396, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34076872

RESUMO

The purpose of this research is to study the efficacy of GnRH-a versus r-hCG triggering in patients who go through fertility preservation cycles. This retrospective cohort study was performed in a tertiary university-affiliated medical center. It includes 191 patients undergoing fertility preservation cycles between May 2013 and September 2018, in which ovulation was induced by either GnRH-a or r-hCG. Main outcome measures were number and rate of mature oocyte. Among treatment cycles with medical indication, GnRH agonist significantly increases the odds for high mature rate by 3.55 (1.30-9.66), while in treatment cycles with social indication, there is no significant effect of the triggering agent. An advantage for GnRH-a triggering was observed in medically indicated preservation cycles.


Assuntos
Gonadotropina Coriônica/farmacologia , Preservação da Fertilidade/métodos , Hormônio Liberador de Gonadotropina/agonistas , Hormônio Liberador de Gonadotropina/metabolismo , Oócitos/metabolismo , Pamoato de Triptorrelina/farmacologia , Adulto , Estudos de Coortes , Feminino , Humanos , Oócitos/efeitos dos fármacos , Proteínas Recombinantes/farmacologia , Estudos Retrospectivos
12.
Cell Stem Cell ; 28(9): 1549-1565.e12, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-33915080

RESUMO

Isolating human MEK/ERK signaling-independent pluripotent stem cells (PSCs) with naive pluripotency characteristics while maintaining differentiation competence and (epi)genetic integrity remains challenging. Here, we engineer reporter systems that allow the screening for defined conditions that induce molecular and functional features of human naive pluripotency. Synergistic inhibition of WNT/ß-CATENIN, protein kinase C (PKC), and SRC signaling consolidates the induction of teratoma-competent naive human PSCs, with the capacity to differentiate into trophoblast stem cells (TSCs) and extraembryonic naive endodermal (nEND) cells in vitro. Divergent signaling and transcriptional requirements for boosting naive pluripotency were found between mouse and human. P53 depletion in naive hPSCs increased their contribution to mouse-human cross-species chimeric embryos upon priming and differentiation. Finally, MEK/ERK inhibition can be substituted with the inhibition of NOTCH/RBPj, which induces alternative naive-like hPSCs with a diminished risk for deleterious global DNA hypomethylation. Our findings set a framework for defining the signaling foundations of human naive pluripotency.


Assuntos
Células-Tronco Pluripotentes , Animais , Diferenciação Celular , Embrião de Mamíferos , Humanos , Camundongos , Transdução de Sinais , Trofoblastos
13.
Sci Rep ; 11(1): 5113, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33664379

RESUMO

Familial adenomatous polyposis (FAP) is an inherited syndrome caused by a heterozygous adenomatous polyposis coli (APC) germline mutation, associated with a profound lifetime risk for colorectal cancer. While it is well accepted that tumorigenic transformation is initiated following acquisition of a second mutation and loss of function of the APC gene, the role of heterozygous APC mutation in this process is yet to be discovered. This work aimed to explore whether a heterozygous APC mutation induces molecular defects underlying tumorigenic transformation and how different APC germline mutations predict disease severity. Three FAP-human embryonic stem cell lines (FAP1/2/3-hESC lines) carrying germline mutations at different locations of the APC gene, and two control hESC lines free of the APC mutation, were differentiated into colon organoids and analyzed by immunohistochemistry and RNA sequencing. In addition, data regarding the genotype and clinical phenotype of the embryo donor parents were collected from medical records. FAP-hESCs carrying a complete loss-of-function of a single APC allele (FAP3) generated complex and molecularly mature colon organoids, which were similar to controls. In contrast, FAP-hESCs carrying APC truncation mutations (FAP1 and FAP2) generated only few cyst-like structures and cell aggregates of various shape, occasionally with luminal parts, which aligned with their failure to upregulate critical differentiation genes early in the process, as shown by RNA sequencing. Abnormal disease phenotype was shown also in non-pathological colon of FAP patients by the randomly distribution of proliferating cells throughout the crypts, compared to their focused localization in the lower part of the crypt in healthy/non-FAP patients. Genotype/phenotype analysis revealed correlations between the colon organoid maturation potential and FAP severity in the carrier parents. In conclusion, this study suggest that a single truncated APC allele is sufficient to initiate early molecular tumorigenic activity. In addition, the results hint that patient-specific hESC-derived colon organoids can probably predict disease severity among FAP patients.


Assuntos
Proteína da Polipose Adenomatosa do Colo/genética , Polipose Adenomatosa do Colo/genética , Neoplasias Colorretais/genética , Predisposição Genética para Doença , Polipose Adenomatosa do Colo/patologia , Adulto , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Neoplasias Colorretais/patologia , Feminino , Genótipo , Mutação em Linhagem Germinativa/genética , Heterozigoto , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Embrionárias Humanas/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem
14.
Artigo em Inglês | MEDLINE | ID: mdl-31708867

RESUMO

Purpose: To compare the morphokinetic parameters of pre-implantation development between embryos of women of advanced maternal age (AMA) and young women. Methods: Time-lapse microscopy was used to compare morphokinetic variables between 495 embryos of AMA women ≥ age 42 years and 653 embryos of young patients ( 0.05). Conclusions: While early morphokinetic parameters do not reflect dynamics unique to embryos of older women, a tendency toward developmental arrest was observed, which would likely be even more pronounced at later stages of development.

15.
Stem Cells ; 37(12): 1505-1515, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31461190

RESUMO

Human embryonic stem cells (hESCs) provide an essential tool to investigate early human development, study disease pathogenesis, and examine therapeutic interventions. Adenomatous polyposis coli (APC) is a negative regulator of Wnt/ß-catenin signaling, implicated in the majority of sporadic colorectal cancers and in the autosomal dominant inherited syndrome familial adenomatous polyposis (FAP). Studies into the role of Wnt/ß-catenin signaling in hESCs arrived at conflicting results, due at least in part to variations in culture conditions and the use of external inhibitors and agonists. Here, we directly targeted APC in hESCs carrying a germline APC mutation, derived from affected blastocysts following preimplantation genetic diagnosis (PGD) for FAP, in order to answer open questions regarding the role of APC in regulating pluripotency and differentiation potential of hESCs. Using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated protein 9 (Cas9), we generated second hit APC mutations in FAP-hESCs. Despite high CRISPR/Cas9 targeting efficiency and the successful isolation of many clones, none of the isolated clones carried a loss of function mutation in the wild-type (WT) APC allele. Using a fluorescent ß-catenin reporter and analysis of mutated-allele frequencies in the APC locus, we show that APC double mutant hESCs robustly activate Wnt/ß-catenin signaling that results in rapid differentiation to endodermal and mesodermal lineages. Here, we provide direct evidence for a strict requirement for constant ß-catenin degradation through the APC destruction complex in order to maintain pluripotency, highlighting a fundamental role for APC in self-renewal of hESCs. Stem Cells 2019;37:1505-1515.


Assuntos
Polipose Adenomatosa do Colo/genética , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Pluripotentes/citologia , beta Catenina/metabolismo , Polipose Adenomatosa do Colo/metabolismo , Sistemas CRISPR-Cas/genética , Linhagem Celular , Desenvolvimento Embrionário/fisiologia , Humanos , Via de Sinalização Wnt/fisiologia
16.
Methods Mol Biol ; 1942: 89-100, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30900178

RESUMO

In fragile X syndrome (FXS) embryos FMRP is widely expressed during early stages of embryogenesis however it is inactivated by the end of the first trimester. In the same manner, human embryonic stem cell (hESC) lines from FXS blastocysts, bearing the full CGG expansion mutation, express FMRP in their pluripotent stage and in neurons derived following in vitro differentiation, FMR1 is completely silenced. Therefore, in vitro neural differentiation of FX-hESC lines serves as a uniquely valuable model system to study the developmental mechanisms underlying FXS, together with the proper differentiation protocol to mimic the neurodevelopmental process occurs in vivo.


Assuntos
Diferenciação Celular , Células-Tronco Embrionárias/citologia , Síndrome do Cromossomo X Frágil , Células-Tronco Pluripotentes Induzidas/citologia , Modelos Biológicos , Neurônios/citologia , Células Cultivadas , Células-Tronco Embrionárias/metabolismo , Humanos , Técnicas In Vitro , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios/metabolismo
17.
Methods Mol Biol ; 1942: 123-129, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30900180

RESUMO

Calcium is a major regulator of neuronal activity and calcium signaling is critically important for normal neuronal function. Ca imaging is a well-established tool for studying neuronal function and ongoing spontaneous Ca2+ transients are a good indicator of neuronal maturity. There are various indicators available today, differing by their sensitivity, spectra, and loading method. Here we present a method for measurement of Ca2+ transients in neurons using two different Ca2+ indicators, Oregon Green BAPTA-1 and GCaMP6.


Assuntos
Potenciais de Ação , Cálcio/metabolismo , Diferenciação Celular , Processamento de Imagem Assistida por Computador/métodos , Microscopia/métodos , Neurônios/metabolismo , Sinalização do Cálcio , Células Cultivadas , Quelantes/metabolismo , Ácido Egtázico/análogos & derivados , Ácido Egtázico/metabolismo , Corantes Fluorescentes/metabolismo , Humanos , Neurônios/citologia , Compostos Orgânicos/metabolismo
18.
J Assist Reprod Genet ; 36(2): 315-324, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30421343

RESUMO

PURPOSE: The purpose of the study was to compare the morphokinetic parameters of embryos carrying balanced chromosomal translocations with those carrying unbalanced chromosomal translocations using time-lapse microscopy. METHODS: The study group included 270 embryos that underwent biopsies on day 3 for preimplantation genetic diagnosis (PGD) for chromosomal translocations in our unit between 2013 and 2015. All embryos were incubated under time-lapse microscopy and evaluated for timing of developmental events up to day 5. The timing of these events was compared between balanced and unbalanced embryos, potentially viable and nonviable variants, and maternal versus paternal inheritance of the translocation. RESULTS: The PGD analysis found that 209 (77%) of the 270 biopsied embryos carried an unbalanced translocation. Embryos carrying unbalanced translocations, which are expected to lead to implantation failure or miscarriage, cleaved less synchronously and were delayed in time of cleavage to the 4-cell stage (t4) and in time of start of blastulation (tSB) compared with balanced embryos (P < 0.05). Furthermore, embryos carrying nonviable translocations demonstrated a significant delay at the time of pronuclei fading (tPNf) compared with those carrying potentially viable translocations (P < 0.05). Embryos whose unbalanced translocations were of maternal origin were significantly delayed in most of the morphokinetic parameters (including tPNf, t2, t3, t4, t6, t7, t8, cc2, s2, and tSB) compared with embryos carrying balanced translocations (P < 0.05). CONCLUSIONS: Embryos carrying unbalanced chromosomal translocations mainly of maternal origin undergo delayed development and asynchronous cleavage that may lead to implantation failure or miscarriage.


Assuntos
Desenvolvimento Embrionário/genética , Fertilização in vitro , Diagnóstico Pré-Implantação , Translocação Genética/genética , Aborto Espontâneo/epidemiologia , Aborto Espontâneo/patologia , Blastocisto/metabolismo , Blastocisto/patologia , Técnicas de Cultura Embrionária , Implantação do Embrião/genética , Transferência Embrionária/métodos , Feminino , Humanos , Masculino , Gravidez , Injeções de Esperma Intracitoplásmicas/métodos
19.
J Assist Reprod Genet ; 34(8): 1095-1100, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28555358

RESUMO

PURPOSE: The aim of the study is to report a case of non-diagnosed complex chromosomal rearrangement (CCR) identified by preimplantation genetic screening (PGS) followed by preimplantation genetic diagnosis (PGD) which resulted in a pregnancy and delivery of healthy offspring. METHODS: A 29-year-old woman and her spouse, both diagnosed previously with normal karyotypes, approached our IVF-PGD center following eight early spontaneous miscarriages. PGS using chromosomal microarray analysis (CMA) was performed on biopsied trophectoderm. Fluorescence in situ hybridization (FISH), as well as re-karyotype, were performed on metaphase derived from peripheral blood of the couple. Subsequently, in the following PGD cycle, a total of seven blastocysts underwent CMA. RESULTS: A gain or loss at three chromosomes (3, 7, 9) was identified in six out of seven embryos in the first PGS-CMA cycle. FISH analysis of parental peripheral blood samples demonstrated that the male is a carrier of a CCR involving those chromosomes; this was in spite of a former diagnosis of normal karyotypes for both parents. Re-karyotype verified the complex translocation of 46,XY,t (3;7;9)(q23;q22;q22). Subsequently, in the following cycle, a total of seven blastocysts underwent PGD-CMA for the identified complex translocation. Two embryos were diagnosed with balanced chromosomal constitution. A single balanced embryo was transferred and pregnancy was achieved, resulting in the birth of a healthy female baby. CONCLUSIONS: PGS employing CMA is an efficient method to detect unrevealed chromosomal abnormalities, including complicated cases of CCR. The combined application of array CGH and FISH technologies enables the identification of an increased number of CCR carriers for which PGD is particularly beneficial.


Assuntos
Cromossomos Humanos/genética , Rearranjo Gênico/genética , Adulto , Blastocisto/fisiologia , Aberrações Cromossômicas , Feminino , Humanos , Masculino , Gravidez , Diagnóstico Pré-Implantação/métodos
20.
Reprod Biol Endocrinol ; 15(1): 31, 2017 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-28446182

RESUMO

BACKGROUND: The study is aimed to describe a novel strategy that increases the accuracy and reliability of PGD in patients using sperm donation by pre-selecting the donor whose haplotype does not overlap the carrier's one. METHODS: A panel of 4-9 informative polymorphic markers, flanking the mutation in carriers of autosomal dominant/X-linked disorders, was tested in DNA of sperm donors before PGD. Whenever the lengths of donors' repeats overlapped those of the women, additional donors' DNA samples were analyzed. The donor that demonstrated the minimal overlapping with the patient was selected for IVF. RESULTS: In 8 out of 17 carriers the markers of the initially chosen donors overlapped the patients' alleles and 2-8 additional sperm donors for each patient were haplotyped. The selection of additional sperm donors increased the number of informative markers and reduced misdiagnosis risk from 6.00% ± 7.48 to 0.48% ±0.68. The PGD results were confirmed and no misdiagnosis was detected. CONCLUSIONS: Our study demonstrates that pre-selecting a sperm donor whose haplotype has minimal overlapping with the female's haplotype, is critical for reducing the misdiagnosis risk and ensuring a reliable PGD. This strategy may contribute to prevent the transmission of affected IVF-PGD embryos using a simple and economical procedure. TRIAL REGISTRATION: All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. DNA testing of donors was approved by the institutional Helsinki committee (registration number 319-08TLV, 2008). The present study was approved by the institutional Helsinki committee (registration number 0385-13TLV, 2013).


Assuntos
Doenças Genéticas Ligadas ao Cromossomo X/genética , Haplótipos/genética , Diagnóstico Pré-Implantação/normas , Espermatozoides/fisiologia , Espermatozoides/transplante , Doadores de Tecidos , Feminino , Doenças Genéticas Ligadas ao Cromossomo X/terapia , Humanos , Masculino , Diagnóstico Pré-Implantação/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...