Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Polymers (Basel) ; 13(6)2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33807048

RESUMO

This study exposes the potential usefulness of a new co-processed excipient, composed of alginic acid and microcrystalline cellulose (Cop AA-MCC), for the preparation of immediate drug release tablets by direct compression. Evaluation of the physical and mechanical properties as well as the disintegration behavior of Cop AA-MCC in comparison to commercial co-processed excipients (Cellactose®, Ludipress®, Prosolv® SMCC HD90 and Prosolv® ODT) and to the physical mixture of the native excipients (MCC and AA), was carried out. The obtained results illustrate the good performance of Cop AA-MCC in terms of powder flowability, tablet tensile strength, compressibility, and disintegration time. Although, this new co-processed excipient showed a slightly high lubricant sensitivity, which was explained by its more plastic than fragmentary deformation behavior, it presented a low lubricant requirement due to the remarkably low ejection force observed during compression. Compression speed and dwell time seemed not to affect significantly the tabletability of Cop AA-MCC. The study exposed evenly the performance of Cop AA-MCC compared to Prosolv® ODT, in terms of tabletability and dissolution rate of Melatonin. Cop AA-MCC presented comparable hardness, lower dilution potential, higher lubricant sensitivity, lower ejection force, and faster Melatonin's release time than Prosolv® ODT. In summary, Cop AA-MCC exhibited interesting physical, mechanical, and biopharmaceutical properties, which demonstrate its concurrence to commercially available co-processed excipients. Furthermore, the simplicity of its composition and the scalability of its elaboration makes this multifunctional excipient highly recommended for direct compression.

2.
Carbohydr Polym ; 240: 116280, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32475564

RESUMO

Methyl ester derivatives of alginic acid have been evaluated as potential multifunctional excipients for pharmaceutical direct compression. The use of alginic acid as an excipient in tablet formulation is limited because of certain drawbacks such as low tablet hardness and poor compressibility. The objective of this work is to improve these properties through esterification of alginic acid, chemical modification commonly used for enhancing the functionality of tableting excipients. It has been observed that the degree of methylation (DM) has a profitable impact in the physico-chemical and mechanical properties of the obtained materials. In general, an increase in the degree of methylation yielded tablets with higher tensile strength and better compressibility. Furthermore, modified alginates exhibited extended disintegration times compared to native alginic acid due to the introduced hydrophobicity. Finally, the functional versatility of the modified alginates as disintegrating and filling/binding agents was tested by formulating them with microcrystalline cellulose and lactose.

3.
AAPS PharmSciTech ; 21(3): 94, 2020 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-32096096

RESUMO

The aim of this study is to investigate the relationship between the structural, molecular, and particulate properties of alginic acid and its functional characteristics in direct compression (tabletability, compressibility, elasticity, deformation mechanism, and disintegration ability). Therefore, accurate characterization of two different batches of alginic acid was executed (X-ray powder diffraction, Fourier-transform infrared spectroscopy, thermogravimetric analysis, scanning electronic microscopy, 1H nuclear magnetic resonance, size exclusion chromatography - multi angle light scattering, viscosimetry, carboxylic acid titration, powder flowability, true density, laser granulometry). Results showed that molecular weight seems to affect tablet properties and that the alginic acid with the lowest molecular weight provides the hardest tablets with the lowest elastic recovery. Furthermore, these results show the potential interest of exploiting alginic acid as filler excipient in tablet formulation. Finally, disintegration properties of tested materials were found to be close to that of commercial superdisintegrants (Glycolys® and Kollidon Cl®) but not correlated to their swelling force. It can be concluded, for the first time, that the determination of alginic acid molecular weight seems key for applications in direct compression and in particular for obtaining tablets with reproducible strength.


Assuntos
Ácido Algínico/análise , Ácido Algínico/química , Avaliação Pré-Clínica de Medicamentos/métodos , Elasticidade , Excipientes/química , Dureza , Fenômenos Mecânicos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Relação Estrutura-Atividade , Comprimidos , Difração de Raios X/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA