Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am Nat ; 199(6): 841-854, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35580220

RESUMO

AbstractEcological interactions link species in networks. Loss of species from or introduction of new species into an existing network may have substantial effects for interaction patterns. Predicting changes in interaction frequency while allowing for rewiring of existing interactions-and hence estimating the consequences of community compositional changes-is thus a central challenge for network ecology. Interactions between species groups, such as pollinators and flowers or parasitoids and hosts, are moderated by matching morphological traits or sensory clues, most of which are unknown to us. If these traits are phylogenetically conserved, however, we can use phylogenetic distances to construct latent, surrogate traits and try to match those across groups, in addition to observed traits. Understanding how important traits and trait matching are, relative to abundances and chance, is crucial to estimating the fundamental predictability of network interactions. Here, we present a statistically sound approach ("tapnet") to fitting abundances, traits, and phylogeny to observed network data to predict interaction frequencies. We thereby expand existing approaches to quantitative bipartite networks, which so far have failed to correctly represent the nonindependence of network interactions. Furthermore, we use simulations and cross validation on independent data to evaluate the predictive power of the fit. Our results show that tapnet is on a par with abundance-only, matching centrality, and machine learning approaches. This approach also allows us to evaluate how well current concepts of trait matching work. On the basis of our results, we expect that interactions in well-sampled networks can be well predicted if traits and abundances are the main driver of interaction frequency.


Assuntos
Flores , Polinização , Ecologia , Ecossistema , Flores/anatomia & histologia , Fenótipo , Filogenia
2.
Ecol Lett ; 24(1): 149-161, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33073900

RESUMO

Most studies of plant-animal mutualistic networks have come from a temporally static perspective. This approach has revealed general patterns in network structure, but limits our ability to understand the ecological and evolutionary processes that shape these networks and to predict the consequences of natural and human-driven disturbance on species interactions. We review the growing literature on temporal dynamics of plant-animal mutualistic networks including pollination, seed dispersal and ant defence mutualisms. We then discuss potential mechanisms underlying such variation in interactions, ranging from behavioural and physiological processes at the finest temporal scales to ecological and evolutionary processes at the broadest. We find that at the finest temporal scales (days, weeks, months) mutualistic interactions are highly dynamic, with considerable variation in network structure. At intermediate scales (years, decades), networks still exhibit high levels of temporal variation, but such variation appears to influence network properties only weakly. At the broadest temporal scales (many decades, centuries and beyond), continued shifts in interactions appear to reshape network structure, leading to dramatic community changes, including loss of species and function. Our review highlights the importance of considering the temporal dimension for understanding the ecology and evolution of complex webs of mutualistic interactions.


Assuntos
Polinização , Simbiose , Animais , Ecossistema , Plantas
3.
Ecology ; 101(11): e03162, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33460104

RESUMO

Species phenology plays a key role in determining mutualistic interactions, such as those between plants and pollinators. Notably, temporal synchrony shapes the patterns of interactions by influencing the probability of encounters between interacting partners; thus, species phenology greatly contributes to structuring ecological communities. In these communities, specialized species are expected to show a high level of synchrony with their partners; however, the relationship between species phenology and specialization remains largely unexplored. In three localities in the tropical mountains of Costa Rica, we quantified the level of phenological synchrony in plant-pollinator networks and tested whether phenological synchrony is associated with the degree of pollinator specialization on plant partners. We also tested the relationship between pollinator specialization and the length of the flowering phase of the visited plants. Across all three studied networks, our results show a strong asynchrony between interacting plant and pollinator species. We also found that more specialized pollinators were more asynchronous with their plant partners and, moreover, that specialized pollinators preferably visited plant species with shorter flowering phases compared to generalized pollinators. These patterns suggest that specialized pollinators may be more vulnerable to mutualistic disruptions because they depend primarily on short-lived resources and have a high risk of phenological mismatch. This discovery has important consequences for specialized species' potential to survive and adapt to changes in the phenology of their interacting partners, which is highly relevant in a time characterized by changing climates and associated shifts in species phenology.


Assuntos
Polinização , Reprodução , Mudança Climática , Costa Rica , Flores , Plantas
4.
Am Nat ; 192(2): E81-E92, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30016159

RESUMO

Most pollinators have the foraging flexibility to visit a wide variety of plant species. Yet few studies of pollinator-mediated processes in plants have considered the effects of variation in individual foraging patterns on plant reproductive success. In this study, we use an individual-based model of pollinator foraging economics to predict how visitation rates and pollination success of two coflowering plant species change with their frequency (relative abundance). Whereas previous studies suggested that adaptive foraging of pollinators always favors pollination of abundant plant species (positive frequency dependence), here we show that under certain conditions the per capita pollination success of a rare plant species can exceed that of a more abundant species. Specifically, when the overall flower density is sufficiently high and pollinators' perception ranges are sufficiently large, animals with limited memory of previously encountered rewards forage in a way that favors pollination of the rarer plant species. Moreover, even with perfectly informed foragers, a rare plant species benefits more from offering a higher floral reward than a more abundant species. Our results show that adaptive foraging of individual pollinators can have important implications for plant community dynamics and the persistence of rare plant species.


Assuntos
Biodiversidade , Comportamento Alimentar , Modelos Biológicos , Polinização , Animais , Recompensa
5.
Nat Commun ; 7: 13965, 2016 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-28008919

RESUMO

Impacts of climate change on individual species are increasingly well documented, but we lack understanding of how these effects propagate through ecological communities. Here we combine species distribution models with ecological network analyses to test potential impacts of climate change on >700 plant and animal species in pollination and seed-dispersal networks from central Europe. We discover that animal species that interact with a low diversity of plant species have narrow climatic niches and are most vulnerable to climate change. In contrast, biotic specialization of plants is not related to climatic niche breadth and vulnerability. A simulation model incorporating different scenarios of species coextinction and capacities for partner switches shows that projected plant extinctions under climate change are more likely to trigger animal coextinctions than vice versa. This result demonstrates that impacts of climate change on biodiversity can be amplified via extinction cascades from plants to animals in ecological networks.


Assuntos
Mudança Climática , Ecossistema , Extinção Biológica , Plantas/metabolismo , Adaptação Fisiológica , Animais , Biodiversidade , Clima , Europa (Continente) , Modelos Teóricos , Plantas/classificação , Polinização , Dinâmica Populacional , Dispersão de Sementes , Especificidade da Espécie
6.
Proc Biol Sci ; 282(1810)2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26108627

RESUMO

Plant-pollinator interactions are often thought to have been a decisive factor in the diversification of flowering plants, but to be of little or no importance for the maintenance of existing plant diversity. In a recent opinion paper, Pauw (2013 Trends Ecol. Evol. 28, 30-37. (doi:10.1016/j.tree.2012.07.019)) challenged this view by proposing a mechanism of diversity maintenance based on pollination niche partitioning. In this article, I investigate under which conditions the mechanism suggested by Pauw can promote plant coexistence, using a mathematical model of plant and pollinator population dynamics. Numerical simulations show that this mechanism is most effective when the costs of searching for flowers are low, pollinator populations are strongly limited by resources other than pollen and nectar, and plant-pollinator interactions are sufficiently specialized. I review the empirical literature on these three requirements, discuss additional factors that may be important for diversity maintenance through pollination niche partitioning, and provide recommendations on how to detect this coexistence mechanism in natural plant communities.


Assuntos
Biodiversidade , Ecossistema , Insetos/fisiologia , Magnoliopsida/fisiologia , Polinização , Animais , Modelos Biológicos , Dinâmica Populacional , Especificidade da Espécie
7.
Ecol Lett ; 17(11): 1389-99, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25167890

RESUMO

Co-flowering plant species commonly share flower visitors, and thus have the potential to influence each other's pollination. In this study we analysed 750 quantitative plant-pollinator networks from 28 studies representing diverse biomes worldwide. We show that the potential for one plant species to influence another indirectly via shared pollinators was greater for plants whose resources were more abundant (higher floral unit number and nectar sugar content) and more accessible. The potential indirect influence was also stronger between phylogenetically closer plant species and was independent of plant geographic origin (native vs. non-native). The positive effect of nectar sugar content and phylogenetic proximity was much more accentuated for bees than for other groups. Consequently, the impact of these factors depends on the pollination mode of plants, e.g. bee or fly pollinated. Our findings may help predict which plant species have the greatest importance in the functioning of plant-pollination networks.


Assuntos
Flores/genética , Magnoliopsida/genética , Filogenia , Polinização , Animais , Abelhas , Dípteros , Modelos Biológicos , Néctar de Plantas/química
8.
J Anim Ecol ; 83(3): 639-50, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24219131

RESUMO

One of the most noticeable effects of anthropogenic climate change is the shift in timing of seasonal events towards earlier occurrence. The high degree of variation in species' phenological shifts has raised concerns about the temporal decoupling of interspecific interactions, but the extent and implications of this effect are largely unknown. In the case of plant-pollinator systems, more specialized species are predicted to be particularly threatened by phenological decoupling, since they are assumed to be less flexible in the choice of interaction partners, but until now this hypothesis has not been tested. In this paper, we studied phenology and interactions of plant and pollinator communities along an altitudinal gradient in the Alps as a model for the possible effects of climate change in time. Our results show that even relatively specialized pollinators were much more flexible in their use of plant species as floral resources than their local flower visitation suggested. We found no relationship between local specialization of pollinators and the consistency of their visitation patterns across sites, and also no relationship between specialization and phenological synchrony of pollinators with particular plants. Thus, in contrast to the conclusions of a recent simulation study, our results suggest that most pollinator species included in this study are not threatened by phenological decoupling from specific flowering plants. However, the flexibility of many rarely observed pollinator species remains unknown. Moreover, our results suggest that specialized flower visitors select plant species based on certain floral traits such as the length of the nectar holder tube. If that is the case, the observed flexibility of plant-pollinator interactions likely depends on a high degree of functional redundancy in the plant community, which may not exist in less diverse systems.


Assuntos
Mudança Climática , Pradaria , Insetos/fisiologia , Magnoliopsida/fisiologia , Polinização , Altitude , Animais , Alemanha
9.
Am Nat ; 182(2): 131-46, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23852349

RESUMO

In the light of rapid losses of biodiversity worldwide, it has become more important than ever to study the factors that ensure the continued existence of diverse ecological communities. Whereas the diversity-enhancing effects of antagonistic interactions are relatively well understood, much less is known about the contribution of mutualistic interactions to biodiversity maintenance. This study assesses the influence of mutualistic interactions with pollinators on the diversity of plant communities with alternative means of reproduction besides animal pollination. In contrast to a recent more general model of plant-animal mutualisms, the results of our simulations suggest that interactions with pollinators do not generally promote plant diversity, irrespective of the structure of the interaction network. Despite a potential for increased plant species richness through the positive effect of pollinators on plant birth rates, species richness was mostly negatively affected by the presence of pollinators because existing abundance asymmetries were amplified by animal pollination. Our results imply that for plant communities with alternative means of reproduction, the loss of pollinators will usually not lead to decreased diversity. However, whereas the immediate effects of pollinator loss on plant community composition may be negligible, the long-term population genetic consequences are likely to be severe.


Assuntos
Biodiversidade , Magnoliopsida , Modelos Biológicos , Polinização , Animais , Dinâmica Populacional
10.
Am Nat ; 179(2): 157-68, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22218306

RESUMO

Plant-pollinator networks are systems of outstanding ecological and economic importance. A particularly intriguing aspect of these systems is their high diversity. However, earlier studies have concluded that the specific mechanisms of plant-pollinator interactions are destabilizing and should lead to a loss of diversity. Here we present a mechanistic model of plant and pollinator population dynamics with the ability to represent a broad spectrum of interaction structures. Using this model, we examined the influence of pollinators on the stability of a plant community and the relationship between pollinator specialization and stability. In accordance with earlier work, our results show that plant-pollinator interactions may severely destabilize plant coexistence, regardless of the degree of pollinator specialization. However, if plant niche differentiation, a classical stabilizing mechanism, is sufficiently strong to overcome the minority disadvantage with respect to pollination, interactions with pollinators may even increase the stability of a plant community. In addition to plant niche differentiation, the relationship between specialization and stability depends on a number of parameters that affect pollinator growth rates. Our results highlight the complex effects of this particular type of mutualism on community stability and call for further investigations of the mechanisms of diversity maintenance in plant-pollinator systems.


Assuntos
Insetos/fisiologia , Fenômenos Fisiológicos Vegetais , Polinização , Simbiose , Animais , Ecossistema , Modelos Biológicos , Dinâmica Populacional , Especificidade da Espécie
11.
Am J Primatol ; 70(10): 956-65, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18613007

RESUMO

Relationships between neighboring groups feature prominently in socioecological theory, but few empirical studies have focused on the effects of neighbors on the behavior of primates. Interactions between neighboring groups are most conspicuous during intergroup encounters, but the likelihood of encounters with neighbors can also affect ranging and activity patterns indirectly, and, as a result, behavioral patterns in areas of exclusive use may differ from those in overlap areas of adjacent home ranges. The aim of this study was to examine intergroup relations and spatial variation in home range use in Verreaux's sifaka (Propithecus verreauxi) during the annual mating season. Based on 230 hr of focal animal data collected from ten members of five adjacent groups, we found that behavioral patterns and patterns of resource utilization were not markedly different between areas of exclusive use and overlap areas of adjacent home ranges. Group cohesion tended to be higher in overlap than in core areas, but the proportion of time spent resting and foraging did not differ between these two areas. However, dominant males exhibited a higher scent-marking rate in overlap areas. Observations during intergroup encounters revealed that chases between males occurred frequently, whereas fights involving physical contact were not observed. We also found that the intergroup dominance hierarchy depended on the relative group size or the number of males in each group, with groups of lower dominance rank exhibiting a tendency to sleep proportionally more often in their core areas. The results of this study suggest that in primate species with a moderate level of intergroup aggression, such as Verreaux's sifaka, the possibility of encountering neighbors in areas of home range overlap does not exert strong influence on their behavior and resource utilization.


Assuntos
Comportamento de Retorno ao Território Vital , Comportamento Social , Strepsirhini/psicologia , Animais , Comportamento Competitivo , Comportamento Alimentar , Feminino , Geografia , Masculino , Estações do Ano , Comportamento Sexual Animal , Sono , Strepsirhini/fisiologia , Territorialidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...